留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩石学方法区分页岩中有机质类型

赵建华 金之钧 金振奎 杜伟 温馨 耿一凯

赵建华, 金之钧, 金振奎, 杜伟, 温馨, 耿一凯. 岩石学方法区分页岩中有机质类型[J]. 石油实验地质, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514
引用本文: 赵建华, 金之钧, 金振奎, 杜伟, 温馨, 耿一凯. 岩石学方法区分页岩中有机质类型[J]. 石油实验地质, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514
Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Du Wei, Wen Xin, Geng Yikai. Petrographic methods to distinguish organic matter type in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514
Citation: Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Du Wei, Wen Xin, Geng Yikai. Petrographic methods to distinguish organic matter type in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514

岩石学方法区分页岩中有机质类型

doi: 10.11781/sysydz201604514
基金项目: 中国博士后科学基金(2016M591350)资助。
详细信息
    作者简介:

    赵建华(1985—),男,博士,从事沉积学与非常规油气地质研究。E-mail:zhao_jh2013@163.com。

  • 中图分类号: TE132.2

Petrographic methods to distinguish organic matter type in shale

  • 摘要: 有机质孔在富有机质泥/页岩中广泛发育,被认为是含气页岩孔隙系统中重要的组成部分。有机质孔不仅在干酪根中发育,在固体沥青内部同样发现了大量的有机质孔,不同类型的有机质内部有机孔的形态和发育程度有所差异。根据有机质的成因,可将其分为沉积有机质和迁移有机质。沉积有机质为原始的有机质及其蚀变产物,这些有机质未发生过迁移,与陆源矿物紧密结合;迁移有机质存在于矿物孔隙中,由外地迁移过来的沥青或石油,随着热成熟度的增加,可演变成固体沥青或焦沥青,其周缘通常可见自生矿物。自生石英对页岩孔隙的影响具有双重作用,一方面充填了孔隙空间,减少了页岩孔隙;另一方面自生石英起到了支撑孔隙的作用,抑制了页岩的压实,为迁移有机质的充填保留了一部分孔隙空间。沉积有机质和迁移有机质中均发育孔隙,迁移有机质充填三维空间相互连通的矿物孔隙,内部形成的有机质孔隙在三维空间上的连通性要比沉积有机质强。五峰组—龙马溪组页岩由下至上呈网络状分布的迁移有机质逐渐减少,相互连通的有机质孔隙网络也相应减少,页岩储层质量逐渐变差。

     

  • [1] Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [2] Milliken K L,Esch W L,Reed R M,et al.Grain assemblages and strong diagenetic overprinting in siliceous mudrocks,Barnett shale (Mississippian),Fort Worth Basin,Texas[J].AAPG Bulletin,2012,96(8):1553-1578.
    [3] Curtis M E,Ambrose R J,Sondergeld C H,et al.Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale//Society of Petroleum Engineers North American Unconventional Gas Conference and Exhibition.The Woodlands,Texas:SPE,2011:14-16.
    [4] Slatt R M,O'Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
    [5] Ambrose R J,Hartman R C,Diaz-Campos M,et al.New pore-scale considerations for shale gas in place calculations//Society of Petroleum Engineers Unconventional Gas Conference.Pittsburgh,Pennyslvania:SPE,2010:23-25.
    [6] Curtis M E,Sondergeld C H,Ambrose R J,et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin,2012,96(4):665-677.
    [7] Loucks R G,Reed R M,Ruppel S C,et al.Preliminary classification of matrix pores in mudrocks[J].GCAGS Transactions, 2010, 60:435-441.
    [8] Nelson P H.Pore-throat sizes in sandstones,tight sandstones,andshales[J].AAPG Bulletin 2009,93(3):329-340.
    [9] Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
    [10] Bernard B,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)[J].International Journal of Coal Geology,2012,103:3-11.
    [11] Loucks R G,Reed R M.Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J].GCAGS Transactions,2014,64:713.
    [12] Hunt J M.Petroleum geochemistry and geology[M].2nd ed.NewYork:W.H.Freeman and Company,1995:743.
    [13] Abraham H.Asphalts and allied substances[M].6th ed.NewYork:VanNostrand Company,Inc.,1960.
    [14] Jacob H.Nomenclature,classification,characterization,and genesis of natural solid bitumen (migrabitumen)[M]//Parnell J,Kucha H,Landais P.Bitumens in ore deposits.Berlin Heidelberg:Springer-Verlag,1993:11-27.
    [15] Curiale J A.Origin of solid bitumens,with emphasis on biological marker results[J].Organic Geochemistry,1986,10(1/3):559-580.
    [16] Landis C R,Castaño J R.Maturation and bulk chemical properties of a suite of solid hydrocarbons[J].Organic Geochemistry,1995,22(1):137-149.
    [17] Taylor G H,Teichmüller M,Davis A,et al.Organic petrology[M].Berlin,Stuttgart:Gebrüder Borntraeger,1998:704.
    [18] Tissot B P,Welte D H.Petroleum formation and occurrence[M].2nd ed.Berlin Heidelberg:Springer Verlag,1984:699.
    [19] Bernard S,Horsfield B,Schulz H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:ASTXM and TEM study of the Posidonia shale (Lower Toarcian,northern Germany)[J].Marine and Petroleum Geology,2012,31(1):70-89.
    [20] Lewan M D.Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford shale[J].Geochimica et Cosmochimica Acta,1983,47(8):1471-1479.
    [21] Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
    [22] Milliken K L,Rudnicki M,Awwiller D N,et al.Organic matter-hosted pore system,Marcellus Formation (Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
    [23] Schieber J.SEM observations on ion-milled samples of Devonian Black shales from Indiana and New York:Thepetrographic context of multiple pore types//Camp W K,Diaz E,Wawak B.Electron microscopy of shale hydrocarbon reservoirs.:American Association of Petroleum Geologists,2013:153-171.
    [24] 刘树根,马文辛,Luba J,等.四川盆地东部地区下志留统龙马溪组页岩储层特征[J].岩石学报,2011,27(8):2239-2252. Liu Shugen,Ma Wenxin,Luba J,et al.Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation,East Sichuan Basin,China[J].Acta Petrologica Sinica,2011,27(8):2239-2252.
    [25] 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16. Guo Xusheng,Li Yuping,Liu Ruobing,et al.Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16.
    [26] 郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):28-36. Guo Tonglou,Zhang Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-36.
    [27] 刘若冰.超压对川东南地区五峰组—龙马溪组页岩储层的影响分析[J].沉积学报,2015,33(4):817-827. Liu Ruobing.Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin[J].Acta Sedimentologica Sinica,2015,33(4):817-827.
    [28] Thyberg B,Jahren J,Winje T,et al.Quartz cementation in Late Cretaceous mudstones,northern North Sea:Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J].Marine and Petroleum Geology,2010,27(8):1752-1764.
    [29] Müller A.Cathodoluminescence and characterization of defect structures in quartz with applications to the study of granitic rocks.Göttingen:Georg-August-Universität Göttingen,2000:1-22.
    [30] Götze J,Plötze M,Habermann D.Origin,spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz:A review[J].Mineralogy and Petrology,2001,71(3/4):225-250.
    [31] Wilkin R T,Barnes H L,Brantley S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J].Geochimica et Cosmochimica Acta,1996,60(20):3897-3912.
    [32] Hawkins S,Rimmer S M.Pyriteframboid size and size distribution in marine black shales:A case study from the Devonian-Mississippian of central Kentucky//North-Central Section (36th) and Southeastern Section (51st),Geological Society of America Joint Annual Meeting.Lexington,Kentucky:Geological Society of America,2002.
    [33] Bond S,Wignall P B,Racki G.Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland,Germany,Austria and France[J].Geolo-gical Magazine,2004,141(2):173-193.
    [34] Goldhaber M B,Kaplan I R.The sulfur cycle//Goldberg E D,ed.The sea.New York:John Wiley & Son,1974:569-655.
    [35] Raiswell R.Pyritetexture,isotopic composition and the availability of iron[J].American Journal of Science,1982,282(8):1244-1263.
    [36] Rickard D.Kinetics of pyrite formation by the H2S oxidation of iron (Ⅱ) monosulfide in aqueous solutions between 25 and 125 ℃:The rate equation[J].Geochimica et Cosmochimica Acta,1997,61(1):115-134.
  • 加载中
计量
  • 文章访问数:  1405
  • HTML全文浏览量:  129
  • PDF下载量:  1076
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-05-12
  • 刊出日期:  2016-07-28

目录

    /

    返回文章
    返回