Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin
-
摘要: 苏北盆地溱潼凹陷古近系阜宁组二段陆相页岩油具有高产、稳产特征,在剖析页岩油形成条件的基础上,通过原油物性和地化特征分析,揭示了阜二段页岩油的成因。溱潼凹陷阜二段泥页岩分布广、厚度大,有机质丰度和热演化程度适中,具备形成页岩油的良好物质基础。阜二段页岩油具有低气油比、高异常压力特征,为低含硫轻质—中质油,饱和烃和轻烃含量较高,原油伴生气以甲烷为主。页岩油β-胡萝卜烷、伽马蜡烷含量高,ααα-C29甾烷(20R)含量高于ααα-C27甾烷(20R),形成于咸水的还原环境。热演化程度是控制陆相页岩油品质的关键因素,深凹带阜二段处于生烃高峰,页岩油流动性较好。阜二段Ⅰ、Ⅱ亚段泥页岩普遍含有木栓质体(6.6%)和底栖藻无定型体(11.5%),在成熟阶段既生油又生气,有利于形成轻质组分。阜二段泥页岩具有相对适中的有机质丰度和矿物组成,吸附油能力较弱,滞留油以游离油(69%~96%)为主。Abstract: The continental shale oil in the second member of Paleogene Funing Formation in the Qintong Sag, Subei Basin has the characteristics of high and stable production. Based on the analysis of the formation conditions of shale oil, the genesis of shale oil is revealed according to crude oil geochemical characteristics and physical properties. Results show that the mud shale in the second member of Funing Formation in the Qintong Sag is widely distributed and thick, with medium organic matter abundance and moderate thermal evolution, which provides a good material basis for the formation of shale oil. The shale oil in the second member of Funing Formation has the characteristics of low gas/oil ratio and high pressure, which belongs to low sulfur and light to medium oil, with high content of saturated hydrocarbon and light hydrocarbon, and the associated gas of crude oil is mainly methane. The shale oil has high content of β-daucane and gammacerane, and its sterane content of ααα-C29 (20R) is higher than that of ααα-C27 (20R), indicating that it is formed in the reduction environment of salt water. Thermal evolution is the key factor controlling the quality of continental shale oil. The second member of Funing Formation in the deep sag zone is at the peak of hydrocarbon generation, and the shale oil has good fluidity. The mud shale in the Ⅰ and Ⅱ submembers of the second member of Funing Formation generally contains suberinite (6.6%) and amorphous body of benthic algal (11.5%), and can generate oil and gas at the mature stage, which is conducive to the formation of light components. The mud shale in the second member of Funing Formation has the characteristics of moderate organic matter abundance and mineral composition, and its oil adsorption capacity is poor, making the remaining oil mainly free oil (69%-96%).
-
与北美海相页岩油相比,中国陆相泥页岩热演化程度较低、非均质性强;陆相页岩油密度高、含蜡量高、可流动性差[1],不易开采。近年来,我国石油公司通过加强陆相页岩油富集机理研究、深化地质工程一体化攻关,在准噶尔盆地吉木萨尔凹陷、松辽盆地古龙凹陷、渤海湾盆地济阳坳陷等均获得陆相页岩油勘探突破[2-13]。由于陆相泥页岩沉积环境差异大,岩相组合和物质基础不同,吉木萨尔凹陷芦草沟组泥页岩表现为富长英质和白云石、低黏土矿物[14];古龙凹陷青山口组一段泥页岩表现为富黏土矿物和长石,碳酸盐矿物含量低[15];济阳坳陷沙河街组四段泥页岩表现为富碳酸盐和长英质矿物,黏土矿物含量低[16]。但它们普遍具有有机质丰度较高(TOC含量大于2%)、有机质类型较好的特点[17-20],页岩油油质为轻质油到中质油,发育异常高压。
2020年以来,苏北盆地溱潼凹陷陆相页岩油取得重大突破[21],SD1井测试最高日产油50.9 t,目前累产油已超1.5×104 t;QY1井测试最高日产油66.2 t,累产油超1.7×104 t,揭示了苏北陆相页岩油具有高产、稳产的特征。苏北盆地位于郯庐断裂东侧,属于后生的断陷盆地,具有构造破碎、常规油气资源丰度较低的特点。页岩油产古近系阜宁组自阜二段下部的Ⅰ亚段,泥页岩TOC含量为0.5%~2%、镜质体反射率(Ro)为0.9%~1.0%,有机质类型以Ⅱ型为主;页岩油具有低气油比、高异常压力、流动性较好的特征,与济阳坳陷沙四段、松辽盆地青一段等页岩油具有一定的差异。目前有关阜二段页岩油形成机理的研究较少,笔者从溱潼凹陷阜二段页岩油形成条件入手,剖析阜二段页岩油物性和地化特征,探讨页岩油形成原因,对于深化陆相页岩油富集规律认识具有一定指导意义。
1. 阜二段地质特征
阜二段沉积时期,苏北盆地为湖相沉积,盆地持续下沉,水域逐渐扩大,湖盆范围大于3×104 km。从金湖、高邮、溱潼到海安凹陷,自西向东水体逐渐加深,远离郯庐断裂带,构造越稳定、保存条件越好,但热演化程度降低。溱潼凹陷发育高压页岩油藏,凹陷面积约1 100 km2,阜二段属于半深湖—深湖亚相,TOC含量大于0.5%的暗色泥岩厚度200~400 m(图 1),岩性以灰黑色泥岩和云灰质泥岩、含灰泥岩为主,矿物组成为长英质—黏土质—碳酸盐三元混合,比例为4∶3∶3(图 2)。阜二段自下而上划分为5个亚段:Ⅰ亚段厚度80~138 m,发育厚层纹层状、层状云灰质泥岩、含灰泥岩和泥岩;Ⅱ亚段厚度55~103 m,发育厚层纹层状、层状云灰质泥岩、含灰泥岩和泥岩;Ⅲ亚段厚度30~39 m,发育薄层纹层状灰质泥岩与泥岩互层;Ⅳ亚段厚度13~28 m,为厚层块状含灰泥岩与泥岩;Ⅴ亚段厚度49~81 m,发育灰、深灰色泥岩。阜二段沉积早期为咸化环境,气候炎热,水体由浅至深,震荡频繁;中期为过渡气候,水体为半咸水环境;晚期气候潮湿,水体为淡水环境。从沉积早期到晚期,阜二段岩性由灰云质泥岩、灰质泥岩向含灰泥岩、泥岩过渡[22]。
溱潼凹陷阜二段Ⅲ—Ⅴ亚段泥页岩有机质丰度为0.5%~3%,平均1.48%,有机质类型以Ⅰ—Ⅱ1型为主(图 3),具明显的倾油性;Ⅰ—Ⅱ亚段泥页岩有机质丰度为0.5%~2%,平均1.08%,有机质以Ⅱ型为主,部分为Ⅰ型和Ⅲ型。阜二段有机质整体达到成熟阶段,Ro大于0.7%范围占70%以上,有机质成熟度随埋深呈增大趋势(图 4),2 800 m对应的Ro为0.7%,3 900 m对应的Ro为1.0%,深凹带成熟度总体较高,处于成熟—高成熟阶段,斜坡带处于中低成熟阶段。溱潼凹陷阜二段泥页岩分布范围广,有机质丰度和热演化程度适中,具备形成页岩油的良好物质基础。
2. 页岩油基本特征
溱潼凹陷阜二段页岩油埋深3 500~4 100 m,地温梯度3.68 ℃/hm,属正常地温系统;地层压力系数为1.2~1.5,属于高压页岩油藏。地面原油密度0.838 1~0.898 7 g/cm3,平均值为0.873 1 g/cm3,50 ℃条件下地面原油黏度11.45~292.14 mPa·s,平均值为79.90 mPa·s;凝固点24~41 ℃,平均值为32 ℃;含硫0.08%~0.51%,平均值为0.24%,含蜡量为16.85%~19.98%,平均值为18.36%,阜二段页岩油为低含硫轻质—中质油(表 1),向深凹带原油物性更好,油质更轻。气油比为30~80m3/t,原油溶解气中甲烷含量83.74%~89.66%,平均86.07%;乙烷含量5.82%~8.16%,平均含量7.03%;丙烷含量1.24%~2.49%,平均含量1.89%;二氧化碳含量2.77%~3.53%,平均含量3.15%;不含硫化氢;天然气相对密度0.629~0.658,平均0.649。原油组成中饱和烃、芳烃比例含量高,轻质组分多,其中饱和烃含量为46.7%~77.3%,平均为63.5%;芳烃含量为8.6%~17.4%,平均为12.8%;非烃含量为3.6%~18.3%,平均为10.2%;沥青质含量为2.2%~6.5%,平均为3.4%;轻烃含量为0.9%~31.4%,平均为9.8%。
表 1 苏北盆地溱潼凹陷阜宁组二段页岩油物性特征Table 1. Physical properties of shale oil in the second member of Funing Formation in Qintong Sag, Subei Basin井号 埋深/m 密度/(g·cm-3) 动力黏度(50 ℃)/(mPa·s) 含硫/% SY3-7HF 3 636~3 815 0.8681∼0.88830.8781 31.54∼292.14108.15 0.17∼0.350.25 SD1 3 826~3 952 0.8791∼0.89870.8881 40.04∼118.3767.18 0.16∼0.510.34 QY1 4 015~4 165 0.8381∼0.87000.8500 11.45∼26.6416.98 0.08∼0.260.14 注:表中分式意义为最小值∼最大值平均值。 3. 油源分析
阜二段页岩油为源储一体、连续型基质页岩油藏,泥页岩的形成环境、类型和演化程度影响了原油的组成及性质。如图 5所示,阜二段泥页岩饱和烃生物标志物特征为:正构烷烃呈正态型分布,主峰碳为C25,奇偶优势不明显,Ph>Pr,Pr/Ph为0.38~0.4;从底部到顶部,三环萜烷、伽马蜡烷和β-胡萝卜烷含量逐渐降低,反映沉积环境由咸化、强还原逐渐转换为淡水、弱还原环境;伽马蜡烷/C30藿烷为0.62~1.19,Ts/(Ts+Tm)为0.74~0.79,ααα20RC27、C28、C29甾烷呈“V”型分布,ααα20RC27/C29为0.32~0.70,孕甾烷含量高于升孕甾烷含量,C29甾烷ααα20S(20S+20R)为0.53~0.58,泥页岩Ro约为1.0%。原油饱和烃生物标志物特征显示(图 5):主峰碳为C22,三环萜烷含量较高,C20、C21、C23三环萜烷呈上升型分布,伽马蜡烷含量高,伽马蜡烷/C30藿烷为1.08,Ts含量高于Tm,Ts/(Ts+Tm)为0.72,ααα20RC29甾烷含量高于ααα20RC27,ααα20RC27/C29为0.51,孕甾烷含量低于升孕甾烷含量,C29甾烷ααα20S/(20S+20R)为0.49,对应的Ro值约为1.0%。
油源对比结果表明,阜二段页岩油与阜二段下部Ⅰ亚段泥页岩生物标志化合物特征非常相似(图 5,图 6),表现为三环萜烷、β-胡萝卜烷和伽马蜡烷含量较高,形成于咸化环境;ααα20RC29甾烷含量高于ααα20RC27,有机质生源以高等植物为主。原油母质类型、成熟度参数与泥页岩均具有较好的对应性。
图 6 苏北盆地溱潼凹陷阜宁组二段页岩油和泥页岩生标指纹对比T1.13β(H), 14α(H)-C19三环萜烷;T2.13β(H), 14α(H)-C20三环萜烷;T3.13β(H), 14α(H)-C21三环萜烷;T4.13β(H), 14α(H)-C22三环萜烷;T5.13β(H), 14α(H)-C23三环萜烷;T6.13β(H), 14α(H)-C24三环萜烷;T7.C24-四环萜烷;T8.13β(H), 14α(H)-C26三环萜烷(R);T9.13β(H), 14α(H)-C26-三环萜烷(S);T10.13β(H), 14α(H)-C28三环萜烷(R);T11.13β(H), 14α(H)-C28三环萜烷(S);T12.13β(H), 14α(H)-C29三环萜烷(R);T13.13β(H), 14α(H)-C29三环萜烷(S);S1.C21-5α(H)-孕甾烷;S2.C22-5α(H)-升孕甾烷;S3.5α(H), 14α(H), 17α(H)-胆甾烷(20S);S4.5α(H), 14β(H), 17β(H)-胆甾烷(20R);S5.5α(H), 14β(H), 17β(H)-胆甾烷(20S);S6.5α(H), 14α(H), 17α(H)-胆甾烷(20R);S7.24-甲基-5α(H), 14α(H), 17α(H)-胆甾烷(20S);S8.24-甲基-5α(H), 14β(H), 17β(H)-胆甾烷(20R);S9.24-甲基-5α(H), 14β(H), 17β(H)-胆甾烷(20S);S10.24-甲基-5α(H), 14α(H), 17α(H)-胆甾烷(20R);S11.24-乙基-5α(H), 14α(H), 17α(H)-胆甾烷(20S);S12.24-乙基-5α(H), 14β(H), 17β(H)-胆甾烷(20R);S13.24-乙基-5α(H), 14β(H), 17β(H)-胆甾烷(20S)Figure 6. Comparison of biological standard fingerprints between shale oil and mud shale in the second member of Funing Formation in Qintong Sag, Subei Basin4. 成因分析
溱潼凹陷阜二段I亚段泥页岩有机质丰度不高,阜二段页岩油具有低气油比、高异常压力特征;轻质组分多,流动性较好,主要受到有机质成熟度、有机质类型和有机质丰度影响。
4.1 影响页岩油流动性的关键因素
热演化程度是控制陆相页岩油品质的关键因素,热演化程度越高,页岩油品质和流动性越好[23]。生烃演化史表明,深凹带阜二段泥页岩在戴南组沉积时期进入低熟阶段,在垛二段沉积时期达到成熟阶段,现今Ro为0.9%~1.1%,处于最佳热演化窗口;页岩油品质好,气油比为30~80 m3/t,原油中轻烃含量0.9%~31.4%,轻质组分多;泥页岩滞留油以游离油为主,占比75%~95%。阜二段泥页岩生烃模拟实验显示,有机质成熟以后,Ro增加0.1%,产油率增加一倍[24];Ro达到0.9%以后,游离油的含量显著增加;Ro>1.1%之后,产油率逐渐下降;Ro介于0.9%~1.1%是页岩油最佳的热演化窗口。阜二段泥岩埋深2 800 m开始成熟,3 500 m进入产油高峰阶段,3 900 m到达生油顶峰(图 7),深凹带处于生油高峰阶段(3 500~4 300 m)。因此,适宜的热演化程度对于页岩油流动性至关重要。
4.2 特殊的有机质类型有利于形成轻质组分
Ⅰ型干酪根因为富氢组分发育,有机质丰度高,生成原油气油比适中,有利于形成轻质油。比如济阳坳陷沙三段、松辽盆地青一段页岩油原油密度为0.79~0.84 cm3/g,北美海相泥页岩原油密度为0.78~0.82 cm3/g,主要是与湿气伴生的轻质油和凝析油[25]。
苏北盆地阜二段泥页岩从底部到顶部,腐泥组含量先升高后降低,壳质组和镜质组含量先降低后升高;Ⅰ亚段有机质类型以Ⅱ型为主,有机显微组分以壳质组和镜质组为主(表 2)。如图 8所示,壳质组普遍含有木栓质体(6.6%)和底栖藻无定型体(11.5%),在成熟阶段既生油又生气[26],在较高的热演化阶段有利于生成轻质油。阜二段Ⅰ—Ⅱ亚段泥页岩族组分特征与原油较一致,饱和烃含量为45.5%~56.4%,平均为52%;芳烃含量为14.7%~18.7%,平均为16.5%;非烃含量为10.5%~15.6%,平均为13.4%;沥青质含量为7.7%~10.9%,平均为8.9%。以壳质组为主的泥页岩,在Ro为0.9%~1.1%时,生烃转化率也比较高(图 9),具有中—低TOC含量、高氯仿沥青“A”含量的特征。
表 2 苏北盆地溱潼凹陷阜宁组二段有机显微组分分布Table 2. Distribution of organic macerals in the second member of Funing Formation in Qintong Sag, Subei Basin层位 腐泥组/% 壳质组/% 镜质组/% 惰质组/% 类型指数 干酪根类型 Ⅴ亚段 12.2 74.2 11.9 1.7 38.7 Ⅱ2型 Ⅳ亚段 38.6 53.5 6.9 1.0 59.2 Ⅱ1型 Ⅲ亚段 23.4 63.4 10.8 2.4 44.6 Ⅱ1型 Ⅱ亚段 14.4 64.0 17.1 4.5 29.1 Ⅱ2型 Ⅰ亚段 7.6 66.6 22.1 3.7 20.6 Ⅱ2型 4.3 有机碳、矿物组成及滞留油特征
阜二段泥页岩有机碳和矿物组成适中,滞留油以游离油为主。泥页岩有机质丰度越高,杂原子丰度越高,其与有机质、矿物的吸附能力越强,吸附油含量越高。相对适中的有机质丰度,吸附油能力较弱,滞留油以游离油为主,更有利于页岩油流动。研究表明,随着TOC含量增大,泥页岩生烃能力增强,游离油量会增大,但有机质丰度过高,吸附性增强,游离油含量不再增加(图 10a),泥页岩含油饱和度指数会降低(图 10b),存在一个含油性变低的拐点,每个地区会有差异。纵向上,受岩相、有机质丰度、成熟度影响,不同深度段游离油含量、束缚油含量也不同,碳酸盐矿物、黏土矿物含量为20%~30%的页岩含油性最好(图 10c),且轻质组分比例高(图 10d)。冷冻热解实验表明,阜二段Ⅰ、Ⅱ亚段游离油含量平均为束缚油的8倍,反映了页岩油较好的可动性。以QY1井为例,3 700~4 040 m,游离油含量呈现先上升后下降、再上升再下降的趋势(图 11),游离油占总油比例为69%~96%。其中,3 800~3 870 m,S1-1(游离轻质油)为0.29~5.89 mg/g,S1-2(游离中质油)为0.24~4.38 mg/g,S2-1(吸附油)为0.06~1.08 mg/g,游离油/总油的比值为79%~96%,游离油占总油比例高,为含油性较好的层段;3 970~4 020 m,S1-1为0.03~4.35 mg/g,S1-2为0.08~2.68 mg/g,S2-1为0.03~0.39 mg/g,游离油占总油的69%~96%,含油性较好;4 020 m以深,S1-1和S1-2小于1.0 mg/g,S2-1小于0.2 mg/g,游离油占总油的比例为85%~95%,含油性略变差。
5. 结论
(1) 溱潼凹陷阜二段泥页岩分布范围广、厚度大,有机质丰度和演化程度适中,具备形成页岩油的良好物质基础。
(2) 阜二段页岩油具有低气油比、高异常压力特征,为低含硫轻质—中质油,饱和烃和轻烃含量较高,形成于咸水的还原环境。
(3) 阜二段页岩油轻质组分含量高、流动性好,受到较高的热演化程度、有利的有机质类型、适中的有机质丰度和矿物组成的共同控制。
-
图 6 苏北盆地溱潼凹陷阜宁组二段页岩油和泥页岩生标指纹对比
T1.13β(H), 14α(H)-C19三环萜烷;T2.13β(H), 14α(H)-C20三环萜烷;T3.13β(H), 14α(H)-C21三环萜烷;T4.13β(H), 14α(H)-C22三环萜烷;T5.13β(H), 14α(H)-C23三环萜烷;T6.13β(H), 14α(H)-C24三环萜烷;T7.C24-四环萜烷;T8.13β(H), 14α(H)-C26三环萜烷(R);T9.13β(H), 14α(H)-C26-三环萜烷(S);T10.13β(H), 14α(H)-C28三环萜烷(R);T11.13β(H), 14α(H)-C28三环萜烷(S);T12.13β(H), 14α(H)-C29三环萜烷(R);T13.13β(H), 14α(H)-C29三环萜烷(S);S1.C21-5α(H)-孕甾烷;S2.C22-5α(H)-升孕甾烷;S3.5α(H), 14α(H), 17α(H)-胆甾烷(20S);S4.5α(H), 14β(H), 17β(H)-胆甾烷(20R);S5.5α(H), 14β(H), 17β(H)-胆甾烷(20S);S6.5α(H), 14α(H), 17α(H)-胆甾烷(20R);S7.24-甲基-5α(H), 14α(H), 17α(H)-胆甾烷(20S);S8.24-甲基-5α(H), 14β(H), 17β(H)-胆甾烷(20R);S9.24-甲基-5α(H), 14β(H), 17β(H)-胆甾烷(20S);S10.24-甲基-5α(H), 14α(H), 17α(H)-胆甾烷(20R);S11.24-乙基-5α(H), 14α(H), 17α(H)-胆甾烷(20S);S12.24-乙基-5α(H), 14β(H), 17β(H)-胆甾烷(20R);S13.24-乙基-5α(H), 14β(H), 17β(H)-胆甾烷(20S)
Figure 6. Comparison of biological standard fingerprints between shale oil and mud shale in the second member of Funing Formation in Qintong Sag, Subei Basin
表 1 苏北盆地溱潼凹陷阜宁组二段页岩油物性特征
Table 1. Physical properties of shale oil in the second member of Funing Formation in Qintong Sag, Subei Basin
井号 埋深/m 密度/(g·cm-3) 动力黏度(50 ℃)/(mPa·s) 含硫/% SY3-7HF 3 636~3 815 0.8681∼0.88830.8781 31.54∼292.14108.15 0.17∼0.350.25 SD1 3 826~3 952 0.8791∼0.89870.8881 40.04∼118.3767.18 0.16∼0.510.34 QY1 4 015~4 165 0.8381∼0.87000.8500 11.45∼26.6416.98 0.08∼0.260.14 注:表中分式意义为最小值∼最大值平均值。 表 2 苏北盆地溱潼凹陷阜宁组二段有机显微组分分布
Table 2. Distribution of organic macerals in the second member of Funing Formation in Qintong Sag, Subei Basin
层位 腐泥组/% 壳质组/% 镜质组/% 惰质组/% 类型指数 干酪根类型 Ⅴ亚段 12.2 74.2 11.9 1.7 38.7 Ⅱ2型 Ⅳ亚段 38.6 53.5 6.9 1.0 59.2 Ⅱ1型 Ⅲ亚段 23.4 63.4 10.8 2.4 44.6 Ⅱ1型 Ⅱ亚段 14.4 64.0 17.1 4.5 29.1 Ⅱ2型 Ⅰ亚段 7.6 66.6 22.1 3.7 20.6 Ⅱ2型 -
[1] 聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htmNIE Haikuan, ZHANG Peixian, BIAN Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm [2] 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htmZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm [3] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htmFU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm [4] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htmSUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htm [5] 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241. doi: 10.11781/sysydz202102233ZAN Lin, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241. doi: 10.11781/sysydz202102233 [6] 李东海, 昝灵, 黄文欢, 等. 溱潼凹陷西斜坡阜三段隐蔽油藏勘探开发一体化实践[J]. 油气藏评价与开发, 2021, 11(3): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103002.htmLI Donghai, ZAN Ling, HUANG Wenhuan, et al. Exploration and development integration practice of subtle reservoir of 3rd member of Funing Formation in western slope of Qintong depression[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103002.htm [7] 张世明. 东营凹陷页岩油赋存特征分子动力学模拟[J]. 油气地质与采收率, 2021, 28(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105008.htmZHANG Shiming. Molecular dynamics simulation of shale oil occurrence in Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105008.htm [8] 刘丽, 闵令元, 孙志刚, 等. 济阳坳陷页岩油储层孔隙结构与渗流特征[J]. 油气地质与采收率, 2021, 28(1): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101014.htmLIU Li, MIN Lingyuan, SUN Zhigang, et al. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101014.htm [9] 周立宏, 何海清, 郭绪杰, 等. 渤海湾盆地歧口凹陷古近系沙一下亚段中等成熟页岩油富集主控因素与勘探突破[J]. 石油与天然气地质, 2022, 43(5): 1073-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205006.htmZhou Lihong, He Haiqing, Guo Xujie, et al. Main factors controlling the medium-mature shale oil enrichment and exploration breakthrough in the Paleogene lower E3s1L in Qikou Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(5): 1073-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205006.htm [10] 彭寿昌, 查小军, 雷祥辉, 等. 吉木萨尔凹陷芦草沟组上"甜点"段页岩油储层演化特征及差异性评价[J]. 特种油气藏, 2021, 28(4): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202104005.htmPENG Shouchang, ZHA Xiaojun, LEI Xianghui, et al. Evolution characteristics and difference evaluation of shale oil reservoirs in the upper sweet spot interval of Lucaogou Formation in Jimusaer Sag[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202104005.htm [11] 姚振华, 覃建华, 高阳, 等. 吉木萨尔凹陷页岩油物性变化规律[J]. 新疆石油地质, 2022, 43(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202201011.htmYAO Zhenhua, QIN Jianhua, GAO Yang, et al. Variations of physical properties of shale oil in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202201011.htm [12] 章敬. 非常规油藏地质工程一体化效益开发实践: 以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田, 2021, 28(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102003.htmZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102003.htm [13] 王然, 何文军, 赵辛楣, 等. 准噶尔盆地吉174井芦草沟组页岩油地质剖面分析[J]. 油气藏评价与开发, 2022, 12(1): 192-203 https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201017.htmWANG Ran, HE Wenjun, ZHAO Xinmei, et al. Geological section analysis of shale oil in Lucaogou Formation of Well-Ji-174, Junggar Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 192-203 https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201017.htm [14] 张治恒, 田继军, 韩长城, 等. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202102012.htmZHANG Zhiheng, TIAN Jijun, HAN Changcheng, et al. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag, Jungger Basin[J]. Lithologic Reservoirs, 2021, 33(2): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202102012.htm [15] 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htmLIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm [16] 宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发, 2020, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htmSONG Mingshui, LIU Huimin, WANG Yong, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm [17] 覃建华, 高儇博, 彭寿昌, 等. 准噶尔盆地吉木萨尔凹陷页岩油地球化学特征及油-源对比[J]. 东北石油大学学报, 2021, 45(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202101001.htmQIN Jianhua, GAO Xuanbo, PENG Shouchang, et al. Geochemical characteristics and oil-source correlation of shale oil in Jimsar Sag, Junggar Basin, China[J]. Journal of Northeast Petroleum Univer-sity, 2021, 45(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202101001.htm [18] 张君峰, 徐兴友, 白静, 等. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践[J]. 石油勘探与开发, 2020, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htmZHANG Junfeng, XU Xingyou, BAI Jing, et al. Enrichment and exploration of deep lacustrine shale oil in the first member of Cretaceous Qingshankou Formation, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2020, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm [19] 徐兴友, 刘卫彬, 白静, 等. 松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力[J]. 地质与资源, 2021, 30(3): 296-305. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103011.htmXU Xingyou, LIU Weibin, BAI Jing, et al. Enrichment characte-ristics and resource potential of shale oil in the first member of Qingshankou Formation in southern Songliao Basin[J]. Geology and Resources, 2021, 30(3): 296-305. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103011.htm [20] 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htmWANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htm [21] 姚红生, 昝灵, 高玉巧, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776 [22] 昝灵, 骆卫峰, 马晓东. 苏北盆地溱潼凹陷阜二段烃源岩生烃潜力及形成环境[J]. 非常规油气, 2016, 3(3): 1-8.ZAN Ling, LUO Weifeng, MA Xiaodong. Hydrocarbon generation potential and genetic environments of second member of Funing Formation in Qintong Sag, Subei Basin[J]. Unconventional Oil & Gas, 2016, 3(3): 1-8. [23] 李浩, 陆建林, 王保华, 等. 陆相页岩油富集高产关键因素分析[J]. 现代地质, 2020, 34(4): 837-848. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202004020.htmLI Hao, LU Jianlin, WANG Baohua, et al. Critical controlling factors of enrichment and high-yield of land shale oil[J]. Geoscience, 2020, 34(4): 837-848. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202004020.htm [24] 陈春峰, 万延周, 张伯成, 等. 南黄海盆地阜宁组烃源岩地层热压生烃特征[J]. 海洋地质前沿, 2021, 37(4): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202104002.htmCHEN Chunfeng, WAN Yanzhou, ZHANG Bocheng, et al. Thermo-compression characteristics of hydrocarbon generation for the source rocks in the Funing Formation of South Yellow Sea Basin[J]. Marine Geology Frontiers, 2021, 37(4): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202104002.htm [25] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htmLI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm [26] 张科, 姚素平, 胡文瑄, 等. 木栓质的菌解-热模拟实验特征及木栓质体的成烃演化机制[J]. 地质学报, 2011, 85(6): 1045-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201106013.htmZHANG Ke, YAO Suping, HU Wenxuan, et al. Bacterial degradation and thermal simulation of suberin in quercus suberus: implications for hydrocarbon generation of suberinite[J]. Acta Geologica Sinica, 2011, 85(6): 1045-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201106013.htm 期刊类型引用(16)
1. 钱诗友,杨志强,徐晨. 苏北盆地低有机质断块型页岩油测井评价方法及应用. 油气藏评价与开发. 2025(01): 19-27+39 . 百度学术
2. 夏祥,马晓东,胡文瑄,臧素华. 苏北盆地溱潼凹陷沙垛1井侵入岩岩石学特征及其储集性与含油性研究. 石油实验地质. 2024(01): 87-97 . 本站查看
3. 臧晓琳,逄建东,马立涛,朱泽栋. 中国陆相页岩油开采潜力探讨. 化工管理. 2024(05): 77-79 . 百度学术
4. 臧素华. 苏北盆地溱潼凹陷古新统阜宁组二段侵入岩围岩变质带储层特征及其成藏意义. 石油实验地质. 2024(02): 238-246 . 本站查看
5. 李超,罗涛,黄亚浩,刘义承,陈俊林,王川. 苏北盆地高邮凹陷花页1井古近系阜宁组裂缝脉体流体演化及其对页岩油充注过程的指示意义. 石油实验地质. 2024(02): 228-237 . 本站查看
6. 姚红生,高玉巧,郑永旺,邱伟生,龚月,钱洋慧. CO_2快速吞吐提高页岩油采收率现场试验. 天然气工业. 2024(03): 10-19 . 百度学术
7. 李思佳,唐玄,昝灵,花彩霞,冯赫青,陈学武,郑逢赞,陈宗铭. 溱潼凹陷阜二段页岩岩相组合特征及其对含油性的影响. 中国海上油气. 2024(02): 37-49 . 百度学术
8. 高和群,高玉巧,何希鹏,聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素. 石油与天然气地质. 2024(02): 502-515 . 百度学术
9. 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识. 油气藏评价与开发. 2024(02): 256-266 . 百度学术
10. 段宏亮,孙雅雄,杨保良. 苏北盆地高邮凹陷古近系阜宁组二段页岩油富集主控因素. 石油实验地质. 2024(03): 441-450 . 本站查看
11. 臧素华,荆晓明,刘志华,印燕铃. 金坛盆地始新统阜宁组四段页岩油地质条件. 油气藏评价与开发. 2024(03): 425-434 . 百度学术
12. 卢晧,张皎生,李超,曾联波,刘艳祥,吕文雅,李睿琦. 鄂尔多斯盆地西南部三叠系延长组7段页岩层系层理缝发育特征与主控因素. 石油实验地质. 2024(04): 698-709 . 本站查看
13. 杨兵. 溱潼凹陷红页201井组钻完井关键技术研究与应用. 石化技术. 2024(08): 89-91 . 百度学术
14. 姚红生,陈兴明,周韬. 苏北盆地黄桥地区盐城组氦气成藏地质条件及富集规律. 石油实验地质. 2024(05): 906-915 . 本站查看
15. 高玉巧,蔡潇,夏威,吴艳艳,陈云燕. 苏北盆地古近系阜宁组二段页岩油储集空间特征及甜点段评价——以溱潼凹陷QY1井为例. 石油实验地质. 2024(05): 916-926 . 本站查看
16. 张琬璐,荆晓明. 海安凹陷曲塘次凹阜二段页岩油形成条件研究. 非常规油气. 2024(06): 34-43 . 百度学术
其他类型引用(0)
-