第六卷第三期石油实验地质Vol.6 No.31984 年 9 月EXPERIMENTAL PETROLEUM GEOLOGYSept., 1984

沥青质芳香族核磁共振波谱与 有机质的演化和原油成熟度

王金旺

邵宏舜*

(淄博市新材料研究所) (中国科学院兰州地质研究所)

在对花海盆地研究中,我们应用核磁共振波谱检测了花深一井生油岩抽提物中的沥 青质、芳香烃馏份氢原子的变化特征,依据实验给出的芳香度(f^H)与芳环碳重量(C) 的关系,结合碳、氢元素分析值计算所得的沥青质、芳香族化合物部分平均分子结构参 数,求得经验公式(线性函数式)y=ax+b,同时对斜率a和自变量x进行了讨论;另外 用芳烃质子百分数(PAP)对花海盆地花深1井沉积物的演化规律和柴达木、准噶尔 等 盆地原油的成熟度进行了初步讨论。

一、实 验

1.沥青质、芳烃馏份提取分离

(1) 岩样中沥青质、芳烃提取分离

取过100目筛孔岩样,按图1程序进行抽提,将苯-甲醇提取物——沥青"A"用正 已烷沉淀沥青质,滤液浓缩经硅胶、氧化铝柱层分离,依次得正己烷、苯和苯-乙醇馏份, 芳烃在苯馏份中。

(2)油样中芳香烃提取分离

称0.1克脱水脱泥沙油样。按图1步骤分离获得芳香烃。

2.核磁共振波谱测定

(1) 仪器;用日本岛津(Shimad)公司产的FX—60Q脉冲付里叶变换核磁共振波 谱仪;美国万瑞(Variam)公司产的FT—80A脉冲付里叶变换波谱仪,两种波谱仪均 带有可测H¹和C¹³的双频探头。

(2)测量:取制备好的沥青质或芳烃约10--30毫克装入直径为5mm样品管中,约用 0.2-0.5毫升四氯化碳溶剂或氘代氯仿溶剂溶解,以TMS(四甲基硅烷)作内标进行测定。

[•]中国科学院兰州地质研究所盛小萍、曹瑞同志参加了该项研究工作。

质

石

图1 样品提取分离流程图

二、结果讨论

图2---图6分别展示出花深1井岩心样沥青质和芳香烃馏份、柴达木、准 噶 尔、松辽 盆地原油芳烃馏份以及煤样芳烃馏份的H¹---NMR波谱图。明显看出,来自不同盆地 岩 心样和原油的沥青质、芳烃H¹---NMR波谱图均是由比较宽的芳烃 吸 收 区(δ=6.20--8.00ppm)和脂肪族吸收区(δ=0.50--2.80ppm)构成。其各组分在波谱中的 吸 收峰 归属(岳淑范,1979,1980)见表1。表2列出花深1井沥青质、芳香族的氢积分 NMR值 和岐化指数。表3给出了花深1井沥青质、芳香族馏份的氢分布值。

1.沥青质、芳香烃平均分子结构参数计算

从H¹—NMR波谱所得的化学位移和吸收峰面积,结合碳、氢元素分析数据计 算获 得平均分子结构参数列于表4。计算公式如下:

 $(H_{A}^{D} + H_{A}^{m}) + H_{a} + (H_{B} + H_{r}) = 1$ 面积归一

7.76 5.20 0.89

 图4 柴达木盆地原油芳烃H¹

 ---NMR波谱图

 (氘代氯仿溶剂 FT--80A仪器)

图5 准噶尔盆地原油芳烃H¹
 —NMR波谱图
 (四氯化碳溶剂,FX-60Q仪器)

图6 气煤抽提物芳烃H¹—NMR波谱图 (四氯化碳溶剂,FX-60Q仪器)

沥青)	贞、芳香	F 烂 友组分的H [•] —NMR波谱归属表 表 1
化学位移 (ð=ppm)	积分值	质子类型
>7.05	H _A	双环或多环芳氢
7.05-6.20	H ^m _A	单环 芳 氢
4.00-1.95	Ha	在芳香环α位上的饱和基团中的氢
1.95-1.00	Ηβ	饱和次甲基、甲川以及环烷环上的氢; 芳香环β位或更远处 次甲基上的氢; 环的β位甲基氢。
1,00-0.50	H _r	饱和烃甲基或环烷r 位以上甲基氯

 $H_1 = (H_A^D + H_A^m) H$

芳烃氢的重量%

 $H_2 \cong H_aH$

 $H_3 = (H_\beta + Hr) H$

a烷氢的重量%

其它烷基氢类型的重量%

花深1井沥青质、芳香烃组分氢积分值和碳氢元素值及Bi值

表2

编	井 深	H _A D	+ H _ ^ m	Ha	Н	В	Н	r	沥青] 氢含	贡碳 量	芳烃	镏份含量	B	i
号	(米)	沥青 质	芳烃	沥青 质	沥青 质	芳烃	沥青 质	芳烃	С %	Н%	C%	Н%	沥青质	芳 烃
1	1357.41- 1359.31	6.0		13,4	23.9		12.2		77.65	5.69			0.327	
2	1455.50— 1458.57	8.5		13,6	30.8		19.6		74.75	6.97				
3	1568.95- 1573.83	14.0	12.0	18.524.7	34.2	97.3	17.3	10.0	76.09	7.02	89.23	10.84	0.328	0.082
4	1640.32- 1645.95	22.8	12.0	27.017.0	46.0	110.0	22.5	40.0	76.74	6.66	87.19	6.87	0.308	0.315
5	1763.85 1768.14	32.5	12.0	30.1 9.0	31.5	70.0	9.0	27.0	77.32	6.07	78.06	7.83	0.146	0.342
6	1819.60 1885.55	10.5	17.5	10.523.0	15.0	76.0	6.5	11.0	77.76	5.87	87.34	8.01	0.255	0.115
7	1883.03— 1885.55	29.0	39.0	24.024.3	18.0	55.0	10.5	9.0	57.77	6.51			0.244	0.094
8	2015.71- 2019.50	30.0	28.5	25.527.0	24.5	62.8	16.5	9.2	74.54	7.44	86.43	7.63	0.330	0.102
9	2145.66- 2150.87	30.0		23.5	30.0		10.5		79.50	5.88			0.196	
10	2427.02- 2430.69	29.3	45.0	21.531.0	21.5	65.0	8.7	25.0	76.77	5.48	89.87	8.31	0.189	0.260
11	2742.04-2743.99	25.6	29.5	16.420.0	27.5	43.0	8.5	9.0	81.38	5.58	89.66	8.22	0.221	0.143
12	2853.60-2855.30		40.0	27.2		28.8		50.7			94.18	5.89		0.905

 $N = \frac{H_a + H_\beta + H_r}{H_a}$ $f = \frac{12n}{(3-Z)n+Z}$ $\mathbf{C}_{s}=\mathbf{f}\left(\mathbf{H}_{2}+\mathbf{H}_{3}\right)$ $C_s = C - C_s$

每个取代烷基的平均碳数

烷基上的平均碳、氢重量比(Z=1.15))

烷基碳的重量%

芳环碳的重量%

	-							
编	井 深	H ^D _A	+ H ^m _A	H	a	Hß	+ H'	
号	(米)	沥青质	芳 烃	沥青质	芳烃	沥青质	芳 烃	
1	1357.41-1359.31	0.1081		0.2414		0.6505		
2	1455.50-1458.57	0.1172		0.1876		0.6952	_	
3	1568.95-1573.83	0.1667	0.083	0.2202	0.1715	0.6131	0.7451	
4	1640.32-1645.95	0.1927	0.067	0.2282	0.0949	0.5790	0.8380	
5	1763.85-1768.14	0.3152	0.101	0.2919	0.0763	0.3928	0.8220	
6	1819.60-1885.55	0.2471	0.1373	0.2470	0.1804	0.5059	0.6824	
7	1883.03-1885.55	0.3515	0.2752	0.2969	0.2801	0.3515	0.4448	
8	2015.71-2150.50	0.3109	0.2235	0.2642	0.2118	0.4249	0.5647	
9	2145.66-2150.87	0.3191		0.2500		0.4309		
10	2427.02-2430.69	0.3488	0.2711	0.2917	0.1867	0.3595	0.5422	
11	2742.04-2743.99	0.3556	0.2906	0.2278	0.1970	0.4167	0.5123	
12	2853.60-2855.30		0.2727		0.1854		0.5419	

花深1井沥青质、芳香烃及组分氢分布值表

表 3

$$f_{a}^{H} = \frac{C_{a}}{C}$$

芳香度

$$\begin{array}{l}
 H_{a\,u} \\
 C_{a} &= \frac{H_{a}/2 + (H_{A}^{D} + H_{A}^{m})}{C/H - H_{a}/2 - (H_{\beta} + H_{r})/2} & \text{iafa } \\
 A_{s} \% &= \frac{H_{a}/2 + C/H}{H_{a}/2 + (H_{A}^{D} + H_{A}^{m}) + C/H} & \text{fa } \\
 B_{i} &= \frac{CH_{3}}{CH_{2}} = \frac{H_{r}}{H_{a} + H_{\beta}} & \text{idfa } \\
 \end{array}$$

2.芳香度函数式

表4列出花深1井岩样可溶部分沥青质、芳烃馏份平均分子结构参数随埋藏深度(温度)的变化。并作如下讨论:

依据芳香度的 含 意 ($f_a^H = \frac{C_a}{C}$),由表4给出 f_a^H 和C_a随埋藏深度变化趋势,可求出 经验公式:

y = f(x) lipy = ax + b

的函数式。表5示出沥青质和芳烃平均分子结构参数 f 和C 关系,分别导出下述函数式:

石

等6卷

5

4		芳烃			5.34	9.84	11.77	4.78	2.59	3.67		3.96	3.60	3.92
表		沥青质	3.69	4.71	3.78	3.54	2.35	3.05	2.18	2.61	2.72	2.23	2.78	
		芳 烃			99.01	99.47	98.99	98.77		98.08		97.57	97.43	98.33
	As%	万 谔质	99.22	98.72	98.50	98,37	97.61	98.19	98.10	97.03	97.73	97.60	97.64	
		逐				0	9		8	5		0	33	0
数		壳			2°8	6.1	6.1	5.7	5.2	5.5		5.6	5.5	5.6
构参	f	沥青质	5.55	5.73	5.71	5.52	5.13	5,38	5.05	5.23	5.28	5.07	5.30	
子结	Ca%	达 公			31.50	48.09	34.73	47.70	-	63.28		55.98	57.47	70.20
z 均 分		沥青质	49.47	39.50	35.01	47.08	56.01	55.37	54.49	47.69	58.36	58.66	62.31	
留分斗	Cs%	芝			57.73	57.58	43.33	39.64		33.15		33.89	32.25	23.98
若烃		沥青质	38.18	35.25	41.08	29.66	21.31	32,39	21.31	26.85	21.14	18,11	19.07	
5 青 质	Hau Ca	芳烃			2.18	1.32	1.47	2.20		3.01		3.49	3.75	2.33
1 井 近		沥青质	1.62	2.26	2.45	2.57	3.52	2.72	4.18	4.27	3.20	3.45	3.15	
花泽		式 			35.30	55.16	43.98	54.61		61.65		62.29	64.03	74.54
	f 1	沥青质	63.71	52.84	46.01	61.35	72.44	71.20	71.87	63,98	73.40	76.41	76.56	
	LP	売 初			8.33	6.70	10.17	13.73	27.52	22,35		27.11	29.06	27.27
	PA	沥青质	10.81	11.72	16.67	19.27	31.52	24.71	35,51	31,09	31,91	34.88	35.56	
	忁	αþ	1	3	3	4	5	9	7	8	6	10	11	12

• 7

	沥	青		质			芳		香	烃	
Ca	f ^H _a	Cai = C _a - ā	$f_{ai}^{H} = f_{a}^{H} - \bar{\beta}$	C ² _{ai}	$C^{ai}f^{H}_{ai}$	Ca	f_a^H	$C^{ai} = \\ C_a - \overline{a}$	$ \begin{aligned} \mathbf{f}_{ai}^{H} = \\ \mathbf{f}_{a}^{H} - \overline{\boldsymbol{\beta}} \end{aligned} $	C ² _{ai}	$C_{ai} \cdot f_{ai}^H$
49.47	63.71	-1.81	-2.63	3.28	4.76	31.50	35.30	-18.37	-21.15	337.46	388.53
39.50	52.84	- 11.78	- 13.50	138.77	159.03	48.09	55.16	-1.78	- 1.29	3.17	2.30
35.01	46.01	- 16.27	- 20.33	264.71	330.77	34.73	43.98	-15.14	-12.47	229.22	18.30
47.08	61.35	- 4.20	- 494	17.64	20.96	47.70	54.61	- 2.17	- 1.84	4.71	3.99
56.01	72.44	4.73	6.10	22.37	28.85	53.28	61.55	3.41	5.20	11.63	17.73
55.37	71.20	4.09	4.86	16.73	19.88	55.98	62.29	6.11	5.84	37.33	35.68
54.47	71.87	3.19	5.53	10.18	17.64	57.47	64.03	7.60	7.58	57.76	57.61
47.89	63.98	-3.39	- 2.36	11.49	8.00	70.20	74.54	20.33	18.09	413.31	367.77
58.36	73.40	7.08	7.06	50.13	49.98	Σ398 . 95	451.56	-0.01	-0.04	1094.58	1062.40
58,66	76.41	7.38	10.07	54.46	74.32						
62.31	76,56	11.03	10.22	121.66	112.73						
Σ564.13	729.77	0.05	0.03	711.42	826.92						

沥青质芳烃平均分子的f^H。与C。关系表

$$\overline{a} = \frac{1}{11} (49.47 + 39.50 + 35.01 + 47.08 + 506.01 + 55.37 + 54.47 + 47.89 + 58.36 + 58.66 + 62.31) = \frac{564.13}{11} = 51.28$$

$$\overline{\beta} = \frac{1}{11} (63.71 + 52.84 + 46.01 + 61.35 + 72.44 + 71.20 + 71.87 + 63.98 + 73.40 + 76.41 + 76.56) = \frac{729.77}{11} = 66.34$$

$$a = \frac{\Sigma ((a_i - \overline{a}) (\beta_i - \overline{\beta}))}{\Sigma (a_i - \overline{a})^2} = \frac{826.92}{711.42} = 1.16$$

$$b = \frac{\Sigma\beta_i}{n} - a\frac{\Sigma a_i}{n} = \frac{729.77}{11} - 1.16 \times \frac{564.13}{11} = 6.73$$
#Sew xt:
$$f_*^{H} = 1.16C_* + 6.73\%$$

$$\overline{a} = \frac{1}{8} (31.50 + 48.09 + 34.73 + 47.70 + 53.28 + 55.98 + 57.47 + 70.20)$$

$$= \frac{398.95}{8} = 49.87$$

表 5

$$\overline{\beta} = \frac{1}{8} (35.30 + 55.16 + 43.98 + 54.61 + 61.65 + 62.29 + 64.03 + 74.54)$$

$$= \frac{451.56}{8} = 56.45$$

$$a = \frac{\Sigma ((a_i - \overline{a}) (\beta_i - \overline{\beta}))}{\Sigma (al - \overline{a})^2} = \frac{1062.40}{1094.53} = 0.97$$

$$b = \frac{\Sigma\beta j}{n} - a \frac{\Sigma a i}{n} = \frac{451.56}{8} - 0.97 \times \frac{398.95}{8} = 8.05$$

得经验公式: f = 0.97C + 8.05%

依据上述两函数绘制图7,明显得出两函数斜率"a"值不同,这可能是因两类不同 类型的化合物所引起的。但是,对同类型母质的生油岩来说,因成油环境不同也可能不 同。"a"值越大标志着有机质转化为石油烃类的速度就越快,生成石油烃也就越多(即 芳香度越高有机质成熟度就越高)。因此,我们认为函数斜率"a"值反映了有机质的

图7 花深1井岩样沥青质、芳香 烃的芳香度与芳环碳关系图

3. 芳烃质子百分数

热成熟度,它很可能受沉积物所经历温度、压 力、时间及矿物催化等诸因素所影响。为此, 可设想通过测量油源岩芳香度函数式斜率 "a"值,可对有机质演化程度(即成熟度) 进行讨论。故称斜率"a"为有机质转化因子。 这仅是初步的设想,有待于实践和实验室证 实,进一步找出转换因子a=ai(u·v)的函数 关系,直接地准确地定量测定有机质的演化、 定油成熟度有待于进一步工作。自变量"C_a" 能决定于生油母质本身的特征,即有机质的结 构及活动性。不同类型的有机质(即不同类型 生油母质),可能具有不同的"C_a"值。和 同油源的原油应具有其相同的或近似的"C_a" 值。因此,利用芳香度函数式的"C_a"值方可 区别不同类型生油母质。

亚历山大(R.Alexander, 1980)分析了六量母源岩、原油和凝析油芳香族化合物 的芳烃质子百分数(PAP)后指出:PAP值与沉积温度成线性关系,并在实验室得到证 实。同时还认为这种线性关系是由有机质的热成熟度引起的。所以,测定不同埋藏深度 (温度)沉积物PAP值,方可知有机质热成熟度。表6列出花深1井岩心样可溶部分沥青 质和芳香烃,柴达木、准噶尔、松辽盆地原油芳烃的PAP值和部分标准煤样可溶部分芳 烃的PAP值与镜煤反射率。表6和图8明显表明,沥青质、芳烃的PAP值随埋藏深度(温 度)增加而增加,其值分别为10.81—35.56和8.30—29.60之间。和亚历山大提出的母 源岩芳香族PAP值一般在4—30之间相符,表明花深1井下新民堡群油源岩由浅到深经历 了演化的全过程。该层段油源岩镜煤反射率为0.37—1.12范围,若以0.60为生油门界 值,1357—1885米层段被认为是非生油层段,这同其它地化指标不相符合。若用PAP值 来区分母源岩成熟度,该层段可视为油源岩,仅仅是生成石油的量和石油烃的组成 (即成熟度)之差。因此,利用PAP值确定母源岩和测量生油门界值以及有机质成熟度 指标比镜煤质反射率较为灵敏有效,因为PAP值反映了有机质演化成石油烃时的矿物催 化作用,特别是后期液相的催化作用(亚历山大,1980)。

岩心样、原油和标准煤芳烃质子百分数表

表 6

花 深 1 身	牛 岩 心	、样 抽	提 物	标	准 煤	样	原	油	芳烃					
井 深	沥青质	芳香烃	镜煤质反	煤样	芳 烃	镜煤反	柴 达	本	准可	葛 尔				
(米)	PAP	PAP	别率17 Rm%	编号	PAP	R m%	井 号	PAP	井 号	PAP				
1357.41- 1359.31	10.81		1366术 0.37	褐煤			七尔泉 17井	8.51	<u>独一2</u> 311	31.13				
1455.50- 1458.57	11.72		1463米 0.39	零		0.43	浅67井	15.53	独一3 58井	29.96				
1568.95- 1573.81	16.67	8.30	1465米 0.45	段 (褐煤)			狮子沟深 _ 6 井	7.83	黑一1 地面原油	21.15				
1640.32 - 1645.96	19.27	6.70	1695米 0.46	烟]	花179井	20.57	克一4 3245井	18.06				
1763.85 - 1768.14	31.52	10.17	1696米 0.50	 	25.14		中20井	6.97	克—7 50井	27.59				
1819.60- 1885.55	24.71	13.73	1820米 0.53	段	30,14	0.56	跃42井	9.64	克一8 5153井	27.50				
1883.03- 1885.55	35.15	27.52	1885米 <u>0.56</u>	长焰煤				跃地1井	9.15	克5 <u>红105</u> 井	21.88			
2015.71- 2019.50	31.09	22.35	2018米 0.67	烟煤二 阶段	42.22	0.71	跃参1井	8.33	克一6 <u>红29</u> 井	31.21				
2145.60-	31.91		2146米	<u>(气煤)</u> 烟			咸中11井	10.62	克—13 184井	22.86				
2150.87	34 88		$\frac{0.81}{2431 \%}$	煤三	54 37	1 04	大风山参 1 井	15.79	克一14 180井	26.67				
<u>2430.69</u> 2742.04—	25 50	21.11	0.91	阶 段	04.07	04.07	04.01	- .	- .	1.01	冷湖 3 号 7411 井	18.98	克一21 8035井	25.37
2743.99	35.56	29.06	2853*	(肥煤)			跃进1号 逆7共	10.80	克一18 白巴12井	26.21				
2855.30		27.27	1.12	烟煤四			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17.57	克	30.19				
			29 97米	阶段	阶 段	56.80	1.37	冷湖5号 4409井	20.00	克	19.74			
			1.40	(馬屎)			 尖山顶 深1井	27.02	<u>松</u> 辽 井 号	原油_ PAP				
2)中国	科学院主	兰州 地质	质研究	烟煤五 阶 段	60.78	1.68	 冷湖5号 247共	33.33	红119非	18.93				
所陈应泰同	志资料			(痩煤) 烟煤六		 								
1) 邵宏舜同志资料				阶 段 (贫煤)	64.08	2.10	咸参1井	31.25	新174井	8.26				
	无烟煤 七阶段 无烟煤	/	3.56	冷湖3号 7411井	23.37	农 26井	20.70							
				变质无 烟 煤	/	7.37	冷湖3号 7917井	27.59		- <u> </u>				
				石墨	/	9.15	浅152井	13.33						

从表4中看出,沥青质PAP值比相应的芳烃PAP值均高8.00左右,这很可能是沥青 质分子缩合程度比芳烃分子大的原因引起的。为此,我们认为测量母源岩沥青 质 馏 份 PAP值,同样是衡量有机质热成熟度灵敏而有效的指标。图9为花 深1井 沥青质PAP 值 与<u>Hau</u>(缩合指数)值关系图,明显看出,PAP值随缩合指数增加而迅速增加,但当 缩合指数增加到3.00以上时,PAP值基本上稳定在31.00—35.00范围内,形成一个 区 域。结合其他地球化学指标,可以认为该区域是有机质向石油烃类转化的主要阶段,即 为石油烃类大量生成阶段。

图8 花深1井沥青质分子参数与埋藏深度关系

对于液态石油成熟度的讨论。液态石油主要产于有机质成熟期和高成熟期,故多数 液态原油PAP值相似于中等成熟期(PAP值在15—20范围)和高成熟期(PAP值在20— 30)沉积抽提物的PAP值。为此,有人认为,不成熟原油芳烃的PAP值在8—12 范围, 成熟原油一般是20—26之间,凝析油为26—30之间。从表 6 中看出,准噶尔盆地原油多 数属于成熟原油和凝析油; 而柴达木盆地原油可分为不成熟、成熟和凝析油三种,冷湖 地区的原油为该盆地成熟度较高的原油区,这和卟啉资料相符合(邵宏舜,1982)。

4.有机质演化

花深1井1357-2998米井段下白垩统灰黑色、黑色页岩和泥岩样地化资料的变化(图

图9 花深1井岩样沥青质PAP 值与<u>Han</u>关系图

11),反映了有机质演化的界限和烃类成熟过 程,大体可划分为两个成油期四个不同成熟阶 段。本段通过H¹—NMR波谱特征讨论不同 成 熟阶段沥青质分子结构特点,进一步阐明热动 力在有机质演化中的作用。

(1) 1350-1760米浅层低成熟阶段

从图10得知,该层段中 有 机 质 (2.45— 6.86%), 苯一甲醇沥青 "A"含量(0.132— 0.438%)均较高, 烃含量(32.51—44.24%), 沥青质(9.17—19.69%)都比较低。烃/有 机 碳(烃的转化率)在2.02—4.77之间,表明沉 积层中有机质尚未大量向烃类转化,因而多为

非烃类化合物,是烃和沥青质的贫乏层段,标

志着有机物处于低成熟阶段。该层段沥青质分子组成特点是: PAP值由10.81增加到 31.52, <u>Hau</u>(缩合指数,芳环碳上未被取代的氢与芳环碳比)从1.62增到3.52,表明

分子中芳环碳上的氢原子(称芳氢)随埋藏深度(温度)增加而逐渐增多。引起上述变 化的因素很复杂,但主要原因可能是当温度升高时(约提高10度),分子的活化能增 加,导致取代烷基的碳-碳键(包括与芳环碳相连的甲基碳的碳-碳键)断裂,生成较 短的烷基取代基和氢原子,使芳氢增多。芳香度从42.48增加到77.44,芳碳由32.50增 加到56.01%;烷基碳相反降低到21.08%,都表示出在沥青质分子中芳碳比重增加,而 烷基碳确在降少。可设想分散有机碎屑被埋藏到本层段深度后,经生物化学作用改变了 有机体原始结构状态,导致烃类化合物开始生成,其中芳香环结构的形成是沉积层中有 机质演变为石油烃的一个重要的标记。这种包含有芳香结构聚合物的起始深度(温度) 可能因各个盆地的地质条件不同而有所差异,但总的来说,随埋藏深度增加温度升高而 有大量的烷基化的芳香结构聚合物形成。

晏德福1979年指出:"沥青质分子为一束偏平的五层缩合芳香 片。由于 π-π 键 作 用而堆积在一起,各层间距离为3.55-3.70Å,因而高度为16-20Å,芳香片平均直 径 为8.5-15.0Å,不规则的地方是取代烷基或环烷系。它们有一种使芳 香 片 分 开 的 趋 势"。沥青质H¹--NMR波谱特征表明处于低成熟阶段的沥青质分子中芳香片上的取 代 烷基的碳原子数为4-5个。

(2) 1760-2740米中层成熟阶段和高成熟阶段

该层段中有机碳含量降至0.9%,沥青"A"含量(0.118—0.264)低于低成熟阶段。相反,沥青质含量在20%以上。烃类含量增加到36.49%以上,高于低成熟阶段。 烃类转化率高达14.92%,为剖面最高值,石油烃类大量增加,表明有机质已进入了成 熟阶段和高成熟阶段。

① 1760-2150米成熟阶段

随埋藏深度(温度)继续增加,低成熟阶段所生成的烷基化的芳香结构聚合物,经 受着热裂解作用(即热成熟作用),生成了大量石油烃类化合物。沥青质分子中芳香片 上的烷基碳一碳键进一步断裂;芳构化作用继续进行。使沥青质PAP 值 大 幅 度 增 加 (24.71—35.15%),劳环碳由低成熟阶段的50%增加到55%以上,烷基碳却 降 低 到 21%左右,缩合指数达到最高值(4.27),芳香度升到75%以上(见表4),表明 有 机 质进入成熟阶段。

② 2150-2740米高成熟阶段

本层段沥青"A"、沥青质继续下降,为剖面最低值; 烃类转化率最高(14.92), 总烃含量高达69.56%。这时地层温度比低成熟阶段约高30—40°C左右,有机质热演化 反应速度相应提高3—4倍以上,成为石油烃的主要生成层段。沥青质和芳烃PAP值都达 到最高值,芳香度分别为76.56和74.54,芳环碳和烷基碳也都分别达到最高值和最低值 (见表4)。因此,沥青质分子中芳香片上取代烷基的平均碳原子数为2。其缩合指数由 成熟阶段的4.27降低到3.20左右,引起缩合指数变小的原因不可能是芳香片上的取代烷 基增多,而很可能是芳香片开始增大扩张,导致缩合指数变小。为此,沥青质的分子以 大而规则为特征。

③ 2740米以下深层凝析油与成气阶段

2740米以下的深层阶段,卟啉环系化合物全部遭到热破坏而消失(王金旺,1982)。 正烷烃多轻烃类,OEP值为1.00-1.04(图11)。正烷烃石油烃类向低碳数分子方向裂 化,有机质开始后期深成转化作用,向凝析油和气态烃方向演化。含芳香片的沥青质经 历更高的热分解和缩合作用。温度继续升高凝析油和气态烃进一步裂化为甲烷气。

(收稿日期: 1982年12月9日)