原油轻烃单体系列 GC/C/MS

在线碳同位素分析方法[•]

张文正 裴 戈

(长庆石油勘探开发研究院,甘肃庆阳 745101)

本文系统介绍了 GC-delta S 型气体同位素质谱仪的 GC/C/MS 在线碳同位素分析方法。该方法可获得良好的精度和准度,从各类混合烃类样品中获得大量单体烃的碳同位素数据,为油气地球化学研究提供了丰富的科学信息。

关键词 单体烃系列 在线碳同位素 分析技术 第一作者简介 张文正 男 32岁 工程师 有机地球化学

近一个时期以来,碳同位素在石油,尤其在天然气的地球化学研究中发挥了重要作用和 越来越被人们所重视。80年代后期发展起来的碳同位素在线分析技术,使得人们能够从微 量样品(色谱量级)中获得丰富的单个分子的碳同位素组成信息。从而使得对液态石油烃(及 脂肪酸类等)的碳同位素研究,犹如天然气中 C₁~C₃碳同位素研究一样,进入了分子级水 平,这将促使石油天然气同位素地球化学研究进入一个新的发展阶段。

一、GC/C/MS 在线碳同位素分析技术

1. GC/C/MS 在线分析系统

仪器为 Finigan Mat 质谱公司 80 年代后期开发生产的 GC-delta S 气体同位素质谱仪, 该机除了正常分析 C、H、O、N、S 五种元素同位素外,具备 GC 与 MS 的在线碳同位素分析 功能。图 1 为 GC/C/MS 在线同位素分析系统示意图,主要包括气相色谱(GC)、氧化炉接口 (Combustion interface)、同位素质谱仪、计算机仪器控制与数据处理等系统。

从 GC 与氧化炉接口部分的示意图(图 2)可以清楚看出,气相色谱石英毛细柱通过一 个三通分离器与一个高效微体积氧化炉相连接,分离器的另一路又分为两路,一路可与任何 类型的色谱检测器相联接,另一路为大口径的放空出口,由手动阀控制流量,电磁阀 1 控制 开关。

氧化炉包括加热部分与一根厚壁石英毛细管(耐温 820℃)。毛细管内装有氧化铜丝和

① 国家自然科学基金委员会资助项目

铂丝,氧化铜作为氧化色谱馏份所需氧的来源,铂丝作为催化剂,使氧化过程加速和反应完 全。

在氧化炉的后面,连接一个毛细管状的相态分离器,它由具选择性可渗透的薄膜物质制成。当氧化产物通过时,所有的H₂O 气分子渗透至毛细管外,由一个独立的He 气流带走,避免H₂O 气进入离子源。

开式分流接口部分由毛细管控制进入离子源的流量小于 0.6ml/min(实际为 0.3ml/min),剩余气体开 V2放空。另外一个作用是提供一个 He 气流,使得接口部分可以设定反吹状态,此时这个 He 气流将阻止色谱馏份进入氧化炉接口系统。

图 1 GC/C/MS 在线碳同位素分析示意图

图 2 GC/C/MS 系统的氧化炉接口示意图

根据 V₁ 与 V₂ 所处的状态(不能同时关闭)氧化炉接口处于不同的工作状态,当 V₁ 开 时,称反吹状态,此时所有 GC 的馏份通过 V₁ 放空,只有纯的 He 进入氧化炉接口及离子 源,进入色谱检测器的气流基本不变。这种状态可以使得溶剂以及其它一些不需要的色谱馏 份(这些馏份有可能破坏氧化炉的活性)进入氧化炉接口系统;当 V₂ 开 V₁ 关时,氧化炉接 口处于正常的工作状态,经过色谱分离的馏份进入氧化炉迅速完全氧化成 CO₂ 和 H₂O,在 水分离器部分除去 H₂O 分子,CO₂ 随载气 He 进入离子源测定,此时另有一小股分流进入色 谐检测器(或放空)。

同位素质谱主机的真空系统的特点是包含了一个差动的抽气部分,即在离子源处加一 强力的 240L/S 涡轮分子泵(原为 50L/S 分子泵)、在分析室处加一个 50L/S 的涡轮分子泵、 而实现差动抽气,这种较大的抽气能力可使 delta S 能和气相色谱或元素分析仪作在线联 接。

(1)主要技术指标:CO2 气体分析的内精度为<0.01%(标准进样 100µl、冷指进样 10µl)和<0.1%(标准进样 20µl、冷指进样<3µl)。

(2) 丰度灵敏度: 以质量数 44 对 45 的贡献定义(相对于 44) 丰度小于 20 ppm。

(3)灵敏度:毛细管流量为 0.4mol/s(CO2)时,质量数 44 的离子流为 3×10-8A。

(4)系统稳定性:在整个操作过程中小于1×10⁻⁻。

(5)分辩率:CONS=95 H/D=20

(6)质量范围:2µ~70µ(3KV 加速电压)。

2. 在线分析条件与操作

(1)气相色谱:对所分析的混合物样品进行良好的色谱分离。根据样品特性选择适合的 石英毛细管色谱柱,确定最佳色谱分离条件。以色谱标样配制的正构烷烃混合物(nC₁₁~ nC₂₂)为例,色谱条件为 25m×0.32mm 石英毛细柱,固定相为 SE54,色谱分流 40~60ml/ min,柱前压力 68.9MPa,汽化室 300℃、起始温度 100℃,保持 5 分钟、程序升温 6℃/min,最 终柱箱温度 300℃。该色谱条件可使 nC₁₁~nC₂₂正构烷烃完全分离(见图 3)。

(2)氧化炉接口:快速完全地将色谱馏份转化成 CO₂和 H₂O,并且在水分离部分分离除去 H₂O 分子,避免 H₂O 分子进入离子源。开式分流部分提供一个反吹 He 气流,在反吹状态下,使得溶剂等馏份不进入氧化炉接口。为了满足上述基本技术要求,必须 1)保持氧化炉中氧化铜的活性和铂丝的催化活性,定期对氧化炉通氧(600℃、氧气通过炉子的流量为 0.1~0.2ml/min,时间为 12 小时)活化;2)调好各部分气路的流量。以正构烷烃($nC_{11} \sim nC_{22}$)混合物为例,V₁ 开 V₂ 关,调手动阀 3(原始状态 1~4 号手动阀全关闭),使得进入氧化炉的流量flow A₁ 0.8~1.5ml/min,调反吹(手动阀 2)后,流量 flow A₂ 1.3~1.8ml/min(以反吹完全为准),调手动阀 1,使 flowB(水分子的载气流)为 4~5ml/min,V₁ 关 V₂ 开时,flowC_{1~2}流量与对应的 flow A_{1~2}相近,开在线分析进样阀后,流量减少 0.3ml/min±。

(3)离子源要能够在不同真空条件下正常工作,在线分析时离子源真空度降至 5×10⁻⁶ mba±,大大低于常规双进样系统同位素测定时的真空度(一般 2×10⁻⁷ mba±)。为此我们 作了二种情况下同位素测定值的比较,结果见表 1。可以看出离子源真空度改变基本不影响 测定结果。在线分析也能够获得高精度的分析结果。

图 3 正构烷烃混合液 GC/C/MS 在线分析 m/e 44 离子流质谱图

(4)离子源线性,是指峰值(进样量)与同位素比值之间的线性关系。由于混合物样品中, 各分子化合物相对含量的不均一性,它们的质谱检测峰值将大不相同(0.05V 至几个 V);因 而要求离子源具备良好的线性。我们所进行的多次离子源线性测定结果表明,仪器的离子源 线性良好,在单个质谱峰的 δ¹³C 计算时,数据处理系统将进行线性校正,扣除峰值变化对 δ¹³C值的影响,最后提供可靠数据。离子源的线性只需定期测定即可。

(5)环境温度:基本保持恒定,由于温度的变化,除影响整个仪器的正常工作外,(要求仪器工作时,室温变化不超过1℃),还要影响收集器部分离阻的微变化,这种变化在常规双进样分析时,通过标样与样品的交替测定消除,但在线分析时无法消除。

3. 在线分析流程

以正构烷烃($nC_{11} \sim nC_{12}$)混合物的在线分析为例,当仪器各部分处于正常准备状态,即 可运行在线分析。色谱进样(0.2 μ l)4分钟后,启动电位记录仪,计算机运行在线分析程序。 图 3 为电位记录仪记录的 CO₂ 离子流 m/e 44(或 45、46)的质谱图,图 1 计算机萤光屏上所 显示的质量数 45/44 比值和质量数 44 的谱峰图,质谱峰的 45/44 比值曲线呈正 S 形(边有 反 S 形)。

标准 CO₂ 气体通常采用双进样边在氧化炉接口 V₁ 关 V₂ 开正常工作状态下送入离子 源,即可设定在出峰前送入数个(2~3个)标准 CO₂ 气体,同时还可以在出完峰后或峰中间 (无峰处)进标准 CO₂ 气体(见图 3),进标样过程可以设定程序后,计算机自动控制,也可手 动进样。标样用于各个质谱峰的 δ¹²C 值相对于 PDB 标准的 δ¹³C 换算,从而可以直接获得质

质谱分析方式 常规双进样分析 通载气双进样分析 GC-MS*在线分析 常规双进样分析 通载气双进样分析 G-MS**在线分析 质谱分析方式	$ \frac{1}{8^{13}C} - 21.390 - 21.337 - 21.19 - 26.432 - 26.426 - 26.76 $	标准差 0.04 0.060 0.045 0.018	2 $\delta^{13}C$ -21.389 -21.26 -26.431	标准差 0.067	3 δ ¹³ C - 21. 392 - 21. 28	标准差 0.087	4 ð ¹³ C	标准差		
常规双进样分析 通载气双进样分析 GC-MS*在线分析 常规双进样分析 通载气双进样分析 C-MS**在线分析 质谐分析方式	$\frac{\delta^{13}C}{-21.390}$ -21.337 -21.19 -26.432 -26.426 -26.76	标准差 0.04 0.060 0.045 0.018	$\delta^{13}C$ -21.389 -21.26 -26.431	标准差 0.067	$\delta^{13}C$ - 21. 392 - 21. 28	标准差 0.087	ð ¹³ C	标准差		
常规双进样分析 通载气双进样分析 GC-MS*在线分析 常规双进样分析 通载气双进样分析 C-MS**在线分析 质谐分析方式	$ \begin{array}{r} -21.390 \\ -21.337 \\ -21.19 \\ -26.432 \\ -26.426 \\ -26.76 \\ \end{array} $	0.04 0.060 0.045 0.018	-21.389 -21.26 -26.431	0.067	- 21. 392 - 21. 28	0. 087	-21 375			
通载气双进样分析 GC-MS*在线分析 常规双进样分析 通载气双进样分析 C-MS**在线分析 质谐分析方式	$ \begin{array}{r} -21.337 \\ -21.19 \\ -26.432 \\ -26.426 \\ -26.76 \\ \end{array} $	0.060 0.045 0.018	-21.389 -21.26 -26.431	0.067	-21.392 -21.28	0. 087	-21 375			
GC-MS*在线分析 常规双进样分析 通载气双进样分析 C-MS**在线分析 质谐分析方式	$ \begin{array}{r} -21.19 \\ -26.432 \\ -26.426 \\ -26.76 \\ \end{array} $	0.045	-21.26		-21.28		#1.010	0.055		
常规双进样分析 通载气双进样分析 C-MS**在线分析 质谐分析方式	-26.432 -26.426 -26.76	0.045	- 26. 431				-21.30			
通载气双进样分析 C-MS**在线分析 质谐分析方式	-26.426 -26.76	0.018	-26.431							
C-MS**在线分析 质谱分析方式	<u> </u>			0.058	-26.588	0.057				
质诸分析方式			-26.76		-26.76		-26.85			
质谱分析方式		平 行 分 析 (PDB,%)								
	5		6		7		8			
	ð¹³C	标准差	δ ¹³ C	标准差	٥ ¹³ C	标准差	٥٥٩	标准差		
常规双进样分析		•								
通载气双进样分析	-21.419	0.060	-21.357	0.041	-21.395	0.038				
GC-MS 在线分析	-21.26		-21.32		-21.35		-21.30			
常规双进样分析										
通载气双进样分析										
C-MS••在线分析	- 26. 95									
	平行分		析 (PDB,%)		平均值		, 			
质谱分析方式	9		10							
	<u>ئ</u> رو	标准差	ð¹³C	标准差	911C	标准差				
常规双进样分析					-21.390					
通载气双进样分析					-21.381					
GC-MS•在线分析	-21.19		-21.18		-21.240	0.020				
常规双进样分析					-26.432					
通载气双进样分析					-26.482					
C-MS**在线分析			[1					
	C-MS [™] 在线分析 常规双进样分析 LL载气双进样分析 上载气双进样分析 质谱分析方式 常规双进样分析 LL载气双进样分析 LL载气双进样分析 電载气双进样分析 LL载气双进样分析 LL载气双进样分析 LL载气双进样分析 LL载气双进样分析 LL载气双进样分析 LL载气双进样分析 LL载气风进样分析 LL载气风进样分析	A-MS* 在线分析 -21.20 常规双进样分析 重载气双进样分析 平 质诸分析方式 9 方間欠 20.95 東 成诸分析方式 9 意間欠 21.20 東 成诸分析方式 9 意間欠 21.19 常规双进样分析 12、20 21.19 常规双进样分析 重载气双进样分析 - MS* 在线分析 -21.19 常规双进样分析 - MS* 在线分析 - MS* * 在线分析	RC-MIS* 在线分析 -21.26 常规双进样分析 L载气双进样分析 L载气双进样分析 C-MS**在线分析 -26.95 平 行 分 成诸分析方式 9 <td>パーパ5・住気分析 -21.26 -21.32 常规双进样分析 「職製气双进样分析 「「」」」 -26.95 平行分析(PDB,) 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -21.12 「」」」 -21.12 「」」」 -21.12 「」」」 -21.13 「」」」 -21.13 「」」」 -21.18 「「」」」 -21.18 「「」」」 -21.18 「」」」 -21.18 「」」」 -21.18</td> <td>AC-MS*在线分析 -21.26 -21.32 常规双进样分析 基氧气双进样分析 基氧气双进样分析 丁油S**在线分析 -26.95 平行分析(PDB,%) 丁油C 方诸分析方式 9 10 う¹³C 「加双进样分析 重載气双进样分析 -21.19 市规双进样分析 -21.18 常规双进样分析 二-MS**在线分析 -21.18</td> <td>AC-MS*在线分析 -21.26 -21.32 -21.35 常规双进样分析 -21.32 -21.35 常规双进样分析 「諸令人所方式 平行分析(PDB,%) 平均 「方诸分析方式 9 10 「方法分析方式 9 10 「市規双进样分析 -21.32 -21.35 「京規双进样分析 -26.95 「京規双进样分析 -21.32 -21.35 「京規双进样分析 -21.19 -21.32 「市規双进样分析 -21.19 -21.18 「二、19 -21.18 -21.240 常規双进样分析 -26.432 重載气双进样分析 -26.432 正載气双进样分析 -26.482</td> <td>ホー・MS・住気分析 -21.20 -21.32 -21.35 常规双进样分析 重載气双进样分析 「「」」」」 -26.95 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」</td> <td>AC-MS*在线分析 -21.26 -21.32 -21.35 -21.30 常规双进样分析 </td>	パーパ5・住気分析 -21.26 -21.32 常规双进样分析 「職製气双进样分析 「「」」」 -26.95 平行分析(PDB,) 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -26.95 「「」」」 -21.12 「」」」 -21.12 「」」」 -21.12 「」」」 -21.13 「」」」 -21.13 「」」」 -21.18 「「」」」 -21.18 「「」」」 -21.18 「」」」 -21.18 「」」」 -21.18	AC-MS*在线分析 -21.26 -21.32 常规双进样分析 基氧气双进样分析 基氧气双进样分析 丁油S**在线分析 -26.95 平行分析(PDB,%) 丁油C 方诸分析方式 9 10 う ¹³ C 「加双进样分析 重載气双进样分析 -21.19 市规双进样分析 -21.18 常规双进样分析 二-MS**在线分析 -21.18	AC-MS*在线分析 -21.26 -21.32 -21.35 常规双进样分析 -21.32 -21.35 常规双进样分析 「諸令人所方式 平行分析(PDB,%) 平均 「方诸分析方式 9 10 「方法分析方式 9 10 「市規双进样分析 -21.32 -21.35 「京規双进样分析 -26.95 「京規双进样分析 -21.32 -21.35 「京規双进样分析 -21.19 -21.32 「市規双进样分析 -21.19 -21.18 「二、19 -21.18 -21.240 常規双进样分析 -26.432 重載气双进样分析 -26.432 正載气双进样分析 -26.482	ホー・MS・住気分析 -21.20 -21.32 -21.35 常规双进样分析 重載气双进样分析 「「」」」」 -26.95 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」	AC-MS*在线分析 -21.26 -21.32 -21.35 -21.30 常规双进样分析		

诸峰的 δ¹³C PDB 值。标样也可采用纯单个烃分子(已标定 δ¹³C PDB 值),从 GC 进入。

氧化炉接口的反吹状态设定:视进样情况需要而定,同样可以设定程序后计算机控制, 也可以手动完成。

信号处理与数据输出,当在线分析程序完成后,即进行信号处理与数值计算输出。(1)峰 检测:首先定义峰检测的斜率,最低检出峰值,然后输入在线分析文件号,即运行计算机程序 进行峰检测,可获得峰号、保留时间、峰宽;峰高及质量数 44、45、46 的本底值;(2)δ¹³C 值计 算:峰检测完后,即可进行质谱峰的 δ¹³C PDB 计算,首先输入文件号,设定离子源线性校正 参数,以及标样峰号与 δ¹³C PDB 值等,然后进行计算,输出结果包括峰号,保留时间、峰高、 峰面积、δ¹⁸O、45/44、δ¹³C PDB 等;(3)GC 屏幕窗口,从该窗口可以进一步获得检测的细节, 如每个质谱峰的起始与终止点等,同时还可显示每个质谱峰的 δ¹³C PDB 值、本底等信息。

4. 在线分析精度和准确度

GC-MS 在线碳同位素平行分析采用正构烷烃混合液(nC₁₁~nC₁₀无溶剂),结果见表 2,平行分析以及与常规双进样分析结果对比,表明 GC/C/MS 在线碳同位素分析可以获得 良好的准确度和精密度。

以上讨论表明,GC/C/MS 在线碳同位素分析可以获得可靠的单个分子碳同位素指纹 信息,因而对石油天然气的碳同位素研究与应用具有十分重要的意义。

				螩	名			
文件 写	nC11	nC12	nC ₁₄	nC ₁₅	nC17	nC18	nC ₁₉	nC20
MS 122791. 205	-25.63	-27.64	-46.15	- 40. 67	-26.44	-43.13	-27.01	- 29. 34
MS 165491.205	- 25. 59	-27.58	- 45. 79	-40.21	- 26. 45	-43.87	-27.43	-29.74
MS 173891.205	-25.72	-26.95	-45.13	-40.49	-26.34	-43.85	-26.91	-29.81
MS 161091.205	-26.35	-27.78	-45.93	- 39. 81	-26.80	-43.77	-26.21	- 29. 24
MS 181091. 205	-26.66	-27.08	-44.92	- 40. 14	-26.60	-44.08	-27.28	-29.26
MS 151591.206	-25.81	-27.39	-45.07	-41.16	-26.19	-43.44	-26.73	-29.11
MS 155291.223	-25.49	-27.59	-44. 98	-40.08	- 25. 52	-43.33	-27.32	- 30. 26
MS 095891.223	-26.40	-27.85	-45.87	-40.63	-26.28	-43.09	-26.21	- 30. 27
MS 154991.302	-25.94	-27.57	-44.62	-41.10	-26.56	-43.79	- 26. 59	29. 98
MS 172491.312	-26.07	-26.85	- 45. 96	- 39.62	- 25. 49	-43.22	-27.29	- 30. 65
平均值 がC PDB	-25.97	-27.43	45. 44	-40.39	-26.27	- 43. 55	-26.90	-29.77
标准差	0.125	0.113	0.174	0.162	0.138	0.112	0.143	0.166
常规制样双进样分析	-26.14	-27.37	45. 60	- 40. 26	-26.21	- 43. 81	-26.17	

表 2 正构烷烃混合液(nCu~nCzo)GC/C/MS 在线碳同位素(8¹³C ‰)平行分析结果

二、原油轻烃单体系列碳同位素在线分析方法

1. 分析条件与流程

(1)气相色谱:采用长 50m 石英毛细柱,内径 0.25mm,固定相 OV-OI,柱前压力 13×
6.89MPa、柱前分流 40~60ml/min,气化室温度 250℃(凝析油)或 300℃(原油),起始柱箱
温度 25℃,保持 20 分钟,程序升温 1℃/min,nC₆ 后 4℃/min,最终柱箱温度 250℃或 300℃;

(2)氧化炉接口,flow A₁ 0. 3ml/min,调开式分流后 flowA₂1. 0~1. 3ml/min,flow B 4 ~ 5ml/min,炉温 800℃;

(3)样品;直接采用油样,进样量视原油性质而定,油质轻进样量少,反之油质重进样量 大,常规进祥 0.2~1.0µl。对于轻烃含量很底的重质原油(或轻组分散失较多的轻质油),也 可采用饱和蒸汽进祥,对于微量样品可采用以下特殊进样方式;即在石英毛细柱的前端绕一 个 8 字形,并放入盛有液氮的杯中,进样时,色谱不放空,样品汽化后进入柱子,在柱子前端 富集,到一定时间后(15~20分钟),调大色谱放空至 40~60ml/min,保持 5分钟(以气化室 无剩样品为准)后,取下液氮杯,色谱及仪器其它各部分按正常分析程序启动运行。该方法还 可用于 C₂ 以上气态重烃的直接富集; (4)分析流程:仪器分析条件准备好后,即可进样,色谱按分析程序启动,计算机运行 GC/C/MS 在线分析程序。自动控制在线分析过程,检测并贮存整个分析过程中 CO2 质量数 44、45、46 离子流信号与相应的 45/44、46/44 同位素比值,最后计算机数据处理获得一系列 分析结果以及所有检测到的 CO2 质谱的 8³³C PDB 数值;

(5)质谱峰的定名:样名的整个在线分析过程,电位记录仪、可记录 CO₂m/e44(或 45、 46)离子流质谱图(见图 4),该谱图与相应色谱条件下获得的色谱图十分相似。因而标定了 色谱图中各个峰的名称后,就知道质谱图中各个峰的名称;

图 4 凝析油轻烃单体 GC/C/MS 分析 m/e 44 离子流质谱图

1. 丙烷;2. 异丁烷;3. 正丁烷(含微量 2,2-二甲基丙烷);4. 2-甲基丁烷;5. 正戊烷;6. 2,2-二甲基丁烷;7. 环 戊烷+2,3-二甲基丁烷;8. 2-甲基戊烷;9. 3-甲基戊烷;10. 正已烷;11. 2,2-二甲基戊烷;12. 甲基环戊烷;13. 2,4-二甲基戊烷;14. 2,2,3-三甲基戊烷;15. 苯+3,3-二甲基戊烷;16. 环已烷;17、18. 2-甲基已烷+2,3-二甲基戊烷 +1,1-二甲基环戊烷;19. 3-甲基已烷;20. 1,顺 3-二甲基环戊烷;21. 1,反 3-二甲基环戊烷;43-乙基戊烷;22. 1, 反 2-二甲基环戊烷;23. 正庚烷;24. 甲基环已烷(含少量 2,2-二甲基已烷+1,1,3-三甲基环戊烷)25. 乙基环戊 烷+2,5-二甲基已烷;24. 二甲基已烷;26. 1,反 2,顺 4-三甲基环戊烷;43,3-二甲基已烷;27. 1,反 2,顺 3-三甲 基环戊烷;28,甲苯;29. 2,3-二甲基已烷;26. 1,反 2,顺 4-三甲基环戊烷;30. 2-甲基医烷;11. 3-甲基医烷;31. 3-甲基医烷;31. 3-甲基医戊烷;33. 1,顺 2-二 甲基庚烷;31. 3-甲基庚烷;11,顺 3-二甲基环已烷;11,反 4-二甲基环已烷 32. 1,1-二甲基环已烷;33. 1,顺 2-二 甲基已烷;34. 正辛烷

(6)分析结果与数据评价前文已经介绍了利用色谐标样配制的 nC₁₁~nC₁₉正烷烃混合 物的在线碳同位素平行分析结果,因而我们仅作了数次原油轻烃单体系列在线碳同位素平 行分析,结果见表 3。

根据表 3 中的平行分析结果以及轻烃单体组份的色谱分离程度,我们初步把轻烃单体 碳同位素分析结果划分为三类,第一类:气相色谱分离良好,质谱峰与峰之间无干扰(或干扰 小)分析精度良好,平行分析误差一般小于±0.5%(大部分小于±0.3%),分析数据可靠,属 于这一类的有十多个化合物质谱峰;第二类:现有的气相色谱分离较差,质谱峰与峰之间有 干扰,分析精度低于第一类峰,平行分析误差一般小于±1%,分析数据可供参考。进一步改 善色谱分离条件,可望提高分析精度,属于这一类的也有十多个化合物质谱峰;第三类是混 合峰,组与相邻的质谱峰之间分离较好。在分析条件相同的情况下,其碳同位素值主要受化 合物混合比例的影响。同一样品(或相同成因样品)的平行分析结果较好,分析精度与第一类 峰相近,因而这类峰的 δ¹³C PDB 值对于油(气)对比也具有一定的意义,属于这一类的也有 十多个峰。

综上所述,我们可以看出,良好的色谱分离是提高复杂混合物单个化合物碳同位素分析 精度的前提和关键。

质谱峰号	1	2	3	4	平均值	标准差
标准 CO ₂	-21.37	-21.45	- 21.56	-21.32	-21.43	0.052
标准 CO ₂	-21.44	-21.44	-21.44	-21.44	-21.40	
1	- 18. 93	-21.70	-18.57	-17.28	-19.12	0.930
2	-21.28	-20.44	-21.21	-20.80	- 20. 93	0.195
3	- 25. 34		- 25. 01	-24.36	-24.90	
4	-18.63	-18.62	-19.40	-19.18	-18.96	0.197
5	- 18. 43	- 18. 45	-18.11	- 18. 90	-18.47	0.162
6	- 22. 89	-22.86	- 23. 43	- 24. 93,	-23.53	0.485
7	- 27.64	-20.60	- 27.00	-27.63	- 25. 718	
8	-19.03	-20.60	-19.01	-19.11	-19.44	
9	- 20. 82	- 20. 99	- 21. 00	-21.54	-21.09	0.156
10	- 18. 61	-19.07	-18.79	- 18. 92	-18.85	0.098
11	-24.01	-21.78	- 21. 51	-24.19	- 22. 87	
12	- 20. 61	-21.78	- 21. 51	- 20. 97	- 21. 22	
13	- 17.61	-16.27	-17.47	18. 08	-17.36	0.385
14	-31.16	•	-28.07	-26.95	-28.73	
15	- 21. 41	-21.36	- 21. 45	-21.02	-21.31	0.098
16	- 19. 12	-18.96	-19.07	-18.98	-19.01	0.052
17	-21.17	-21.14	- 21. 55	- 21. 47	-21.33	0.104
18	-20.34	- 20. 28	- 20. 70	-19.82	- 20. 29	0.181
19	-21.19	- 20. 90	-21.31	-22.26	-21.42	0.295
20	-21.23	- 22.00	-21.26	-22.21	21.68	0.252
21,22	- 21. 78	- 22. 54	- 21. 99	- 22. 67	- 22. 22	0.198
23	-19.11	-18.66	- 18.89	-19.26	-18.98	0.131
24	- 18. 68	-18.46	- 18. 86	19. 01	— 18. 753	0.118
25	- 20. 53	-21.06			- 20. 795	
26	- 18. 32	-21.20	-21.61	-20.52	-20.41	0.733
27	- 19. 32	-20.45	- 20. 72	- 20. 45	-20.24	0.312
28	- 19. 84	-19.24	-19.82	- 20. 00	-19.73	0.167
29	- 19. 42	-19.63	-18.80	- 20. 29	-19.54	0.308
30	-21.06	- 20. 94	-21.71	-21.66	- 21. 34	0.199
31	-21.24	-20.59	-21.82	-21.97	-21.16	0.259
32	- 21. 48	-20.17	- 21. 85	-21.09	-21.15	0.361
33	- 19. 63	-19.28	- 20. 83	-21.20	-20.24	0.462
34	-18.44	-18.87	19. 32	- 19. 45	-19.07	0. 288

表 3 凝析油轻烃单体系列碳同位素(&¹³C)平行分析结果

三、GC/C/MS 在线碳同位素分析误差来源

从前面的讨论可以看出,GC/C/MS 在线碳同位素的分析精度要比常规样品制备双进 样质谱分析低一些。原因主要是由于在线碳同位素分析除了质谱分析本身的误差外,归结起 来还有以下误差来源:

1. 色谱分离

从前文原油轻烃单体 GC/C/MS 在线碳同位素平行分析可以清楚看出,色峰分离较差的峰的(二类峰)分析误差明显大于色谱分离好的一类峰,而第三类峰(混合峰)却未能得到单个化合物的碳同位素分析数据。因此良好的色谱分离获得可靠的单个分子化合物碳同位素数据的基础和关键。

2. 氧化炉活性

通常如果氧化炉的活性变差,将有可能使得色谱馏份氧化反应不完全,从而引起系统分 析误差。

3. 质谱峰值

因混合物(原油等)中各个组份的含量不均一性,使得质谱峰差异很大。虽然在一定范围 内,样品各组分峰值高低对 δ¹³C 值的影响可以通过离子源线性进行近性较正,但对于那些 峰值太低(如小于 0.05V)的组份的 δ¹³C 值,由于本底的影响太大,很难进行校正。

4. 系统稳定性

包括仪器分析系统和环境等方面。由于在线碳同位素分析运行时间较长(数十分钟一近 三个小时),在运行过程中又不能过多地送入质谱标样。因而稳定性对在线分析的影响要大 于双进样质谱分析。

其它误差来源还有,质谱本底、进样量等。

综上所述,正常情况下,GC/C/MS 在线碳同位素的分析误差大小主要与气相色谱分离 和系统稳定性有关。因而提高分析精度的方法主要也应该是改善色谱分离条件以及严格保 持分析系统和环境条件的稳定性。

结束语

通过 GC/C/MS 在线碳同位素分析方法试验、正构烷(nCn~nCm)混合物的 GC/C/MS 平行分析及其与常规样品制备,双进样质谱分析的比较,原油轻烃单体分子碳同位素分析等 表明,GC/C/MS 在线碳同位素分析可获得良好的分析精度和准确度。这样可以从混合物样 品(原油、饱和烃、天然气)中获得大量的单个分子碳同位素组成数据,为油气地球化学研究 提供大量科学信息。类似原油轻烃单体分子的 GC/C/MS 在线碳同位素分析方法,只要改变 色谱柱和色谱分离条件、即可进行饱和烃、天然气等样品的 GC/C/MS 在线碳同位素分析。

徐正球同志参加了仪器调试工作。

(收稿日期:1991年8月3日)

A SERIES OF ON-LINE CARBON ISOTOPIC ANALYSES OF MONOSOMERIC HYDROCARBONS IN CRUDE OIL BY GC/C/MS

Zhang Wenzheng Pei Ge (Changqing Institute of Petroleum Exploration and Development)

Abstract

The method of on-line carbon isotopic analyses by GC/C/MS, on a gaseous isotopic spectrometer modelled GC-delfa S, is systematically introduced. It allows for more accuracy and precision and a large amount of carbon isotopic data of monosomeric hydrocarbons derived from different samples of mixed hydrocarbons, and provides plenty of scientific information for petroleum geochemistry.