利用分米波测量岩样中的介电常数

王云山 刘业厚 王明吉

(大庆石油学院,黑龙江安达 151400)

作者根据电磁波中分米波在岩石中传播的原理,通过 HP875 3A 自动网络分析仪,测定岩样的 S 参数,利用 ε,的联 立方程,求解和获得被测岩样的介电常数(ε,),为区分油水层提供依据。

关键词 电磁波 分米波 介电常数 油水层 第一作者简介 王云山 男 53岁 副教授 理论物理

1 测量原理和技术

图 1 是 HP875 3A 自动网络分析仪测量系统的原理框图。由计算机控制切换开关 A、B 自动完成端口1和2的切换测量,以实现含岩样的同轴样品夹持器或同轴导波样品夹持器

图 1 HP875 3A 自动网络分析仪测量系统原理框图

的 S 参数自动测量,并自动完成 ε, 的计算、打印和绘制图表。图 2 是同轴线测量装置、波导测量装置和同轴样品夹持器结构、波导样品夹持器结构图。

图 2 样品夹持器结构及安装原理图

图 3 同轴样品夹持器测量原理及双端口 S 参数等效网络图

图 3 是 50 欧姆同轴样品夹持器(含样)测量原理图和双端口 S 参数等效网络图。 根据微波网络理论(吴万春,1981;Shen LC,1976),可以推导出 S₁₁(ω)和 S₂₁(ω)同反射 系数(Γ)和透射数(T)之间的关系为

式中 Γ 是当被测样品无限长($l = \infty$)时Z。和Z,间的反射系数,且有

$$\Gamma = \frac{Z_{\bullet} - Z_{\bullet}}{Z_{\bullet} + Z_{\bullet}} = \frac{\sqrt{\frac{\mu_{r}}{\epsilon_{r}}} - 1}{\sqrt{\frac{\mu_{r}}{\epsilon_{r}}} + 1}$$
(2)

而 T 是在被测样品为有限长(l=d)时的透射系数,且有

$$T = \exp(-j\omega \sqrt{\mu\varepsilon} \cdot d)$$
$$= \exp(-j(\frac{\omega}{c})\sqrt{\mu_{r}\varepsilon_{r}} \cdot d)$$
(3)

由式(1)知,当我们测量 $S_{11}(\omega)$ 和 $S_{21}(\omega)$ 时,就可以计算出 Γ 和 T,即

$$\Gamma = K \pm \sqrt{K^2 - 1} \tag{4}$$

式中

$$K = \frac{[S_{11}^{2}(\omega) - S_{21}^{2}(\omega)] + 1}{2S_{11}(\omega)}$$

$$T = \frac{[S_{11}(\omega) + S_{21}(\omega)] - \Gamma}{1 - [S_{11}(\omega) + S_{21}(\omega)]\Gamma}$$
(5)

若由波导和带装线理论(瓦·杨森,1981)定义

$$\frac{\mu_{\rm r}}{\epsilon_{\rm r}} = (\frac{1+\Gamma}{1-\Gamma})^2 = X$$
$$\mu_{\rm r} \cdot \epsilon_{\rm r} = -(\frac{C}{\omega d} \ln (\frac{1}{T}))^2 = Y$$

那么

$$\mu_{\rm r} = \sqrt{X \cdot Y} \tag{6}$$
$$\epsilon_{\rm r} = \sqrt{\frac{Y}{X}}$$

(8)

当用波导样品夹持器时,由(6)式可以定义

$$\frac{1}{\Lambda^2} = \left(\frac{\varepsilon_r \cdot \mu_r}{\lambda_o} - \frac{1}{\lambda_c}\right)$$
$$= -\left(\frac{1}{2\pi d} \ln\left(\frac{1}{T}\right)\right)^2 \tag{7}$$

式中

$$\operatorname{Re}(\frac{1}{\Lambda}) = \frac{1}{\lambda_{g}}$$

于是

$$\mu_{\rm r} = \frac{1+\Gamma}{\Lambda(1-\Gamma)\left(\frac{1}{\lambda_{\rm s}^2} - \frac{1}{\lambda_{\rm c}}\right)}$$
$$\epsilon_{\rm r} = \frac{\left(\frac{1}{\Lambda^2} + \frac{1}{\lambda_{\rm c}}\right)\lambda_{\rm s}^2}{\mu_{\rm r}}$$

式中 λ 是真空中的波长, λ 是波导截止波长, λ 是样品材料中的波长。 当采用同轴样品夹持器时,(8)式也同样适用,只是此时 $\lambda = \infty$ 。

2 实验结果及讨论

2.1 实验结果

在 800~1200MHz 范围内,选择 51 个频率采样点,由计算机控制自动网络分析仪逐点 测量 S 参数,处理数据,打印结果(约 15 分钟)。首先,用标准样品空气($\epsilon_r=1+jo$)和有机玻璃($\epsilon_r=2.586+jo$)标定仪器。然后取 10 块不同孔隙度(φ :4.2~32%)的长 2.5cm 的岩样在 同轴样品夹持器中测量。实验结果表明,实部 ϵ' 和虚部 ϵ'' 的相对误差均不大于 0.02。有少数数据点漂移,在测量曲线中出现波纹,如图 4(a)所示。随着频率增高,测量呈下降趋势,这反映了一般性规律。

2.2 测量精度探讨

测量误差主要来源于 S₁₁(ω)和 S₂₁(ω)的测量过程。首先是样品结构设计和加工,由波导和带状线理论(瓦·扬森,1981)知,当样品长度为 λ₈/4 时,ε,的测量误差有最小值。λ₈ 是样品材料中的波长。对于同轴样品夹持器为:

$$\lambda_{\mathbf{z}} = \operatorname{Re}\left(\frac{\lambda_{o}}{\sqrt{\varepsilon_{r} \cdot \mu_{r}}}\right) \tag{9}$$

式中心是真空中的波长。对于波导样品夹持器来说,考虑到散射特性,有

$$\lambda_{g} = \operatorname{Re}\left(\frac{1}{\sqrt{\frac{\varepsilon_{r}\mu_{r}}{\lambda_{o}^{2}} - \frac{1}{\lambda_{o}}}}\right)$$
(10)

由于样品长度的加工可以在±0.01mm之内,而由长度引起的误差约为长度误差的1/5,所 以由长度引起的误差是很小的。因此,要特别注意样品的形状和内、外导体的吻合。其次,内、 外导体间的空隙引起的误差,在基本保证标定平面平行时,由空隙引起的误差,可以通过 Shen(1976)提出的理论得到很好的修正,即

$$\epsilon_{2(spp)} = \frac{\ln (\frac{b}{a})}{2\pi\omega(\frac{Z_c}{K_L})}$$

$$\epsilon_{c2} = \frac{\ln \left(\frac{b'}{a'}\right) / \ln \left(\frac{b}{a}\right)}{\frac{1}{\epsilon_{c_2(app)}} - \frac{\ln \left(\frac{a'}{a}\right)}{\epsilon_{c_1} \ln \left(\frac{b}{a}\right)} - \frac{\ln \left(\frac{b}{b'}\right)}{\epsilon_{c_3} \ln \left(\frac{b}{a}\right)}}$$

式中:a'、b'是样品内、外半径;

a、b 是内导体外半径和外导体内半径;

 K_L , Z_e 分别是岩样与同轴线间存在空隙时同轴线的传播常数和特性阻抗;

 $\varepsilon_{2(app)}$ 是 a=a', b=b' 时视介电常数;

ε.2是修正后样品中的介电常数;

ε_{c1}、ε_{c3}是空隙中的介电常数,一般等于空气的介电常数 经修正后,测量曲线光滑了。如图 4(b)所示。

3 结束语

本实验方法用于岩石材料的测量是可行的,并可以用于相对高损耗(tand>0.1)的材料 和吸收材料的测量。对于低损耗(tand<0.01)的材料,合理的选择谐振腔,也可以应用。

(收稿日期:1991 年 9 月 16 日)

参考文献

1 吴万春.集成固体微波电路.北京:国防工业出版社,1981

2 Shen L C. Transmission-Line Model of an Insulated Antenna With a Two-Layer Eccentric Insulator. IEEE Transactions on Antennas and Propagation, 1976

ON THE MEASUREMENTS FOR THE DIELECTRIC CONSTANTS OF ROCKS BY DECIMETRIC WAVE

Wang Yunshan Liu Yehou Wang Mingjie

(Daqing Petroleum College)

Abstract

Based on the decimetric wave of electric magnetic wave propagating in rocks, the authors measured the S parameters in rock samples on a HP875 3A automatic network analyzer and acquired the dielectric constants(ε_r) of the measured rock samples through the simultaneous equations of ε_r in order to provided a basis for distinguishing oil layers from water layers.