天然气中金刚烷类化合物的检出及其应用

付 宁 于晓果 赵盛蓉

(海洋石油研究中心,河北高碑店市 074000)

采用天然气重烃富集及 M ID/GC/MS 分析技术,从天然气中检测出单、双金刚烷类化合物,并根据琼东南盆地生油岩中金刚烷 指标与镜煤反射率(*R*^o)的实测值,建立了双金刚烷指标与镜煤反射率(*R*^o)数值对应关系。这对研究莺-琼盆地油气成熟度无疑是 一个具重要意义的探索。

关键词 天然气 金刚烷类化合物 成熟度 莺琼盆地 第一作者简介 付 宁 男 36岁 工程师 有机地球化学

1992 年 Wingert 报导了用 MID/GC/MS 方法 检测原油中微量金刚烷类化合物; 1994 年陈军红引 用上述方法成功地在我国高成熟原油及烃源岩中检 出了单、双金刚烷类化合物,并用金刚烷作为成熟度 指标研究了塔里木盆地、鄂尔多斯盆地油气的成熟 度。本文报导的是从莺-琼盆地的天然气中检测出 的单、双金刚烷类化合物,并且根据生油岩中金刚烷 指标与镜煤反射率(*R*°)的实测值,建立了琼东南盆 地金刚烷指标与成熟度(*R*°)的数值对应关系。这对 探索用金刚烷类化合物直接研究和确定天然气成熟 度有重要意义。

1 实验方法

1.1 样品

样品为莺-琼盆地 YA13-1和LD22-1等3 口井的4个天然气样,天然气干燥系数 C₁/ΣCn 均 大于 0.96,为干气。天然气中 CO2 含量高,其中 LD22-1-1井DST1 层为CO2。各气样组分及碳同 位素数值均列于表 1。

1.2 天然气样的处理

采用液氮冷冻富集重烃方法。原理:采集到钢瓶 中的具 20bar 以上的天然气,在一定压力下流出,经 液氮突然冷却,适当控制冷却温度,使轻质部分气 化,而重质部分被逐渐富集达到收集重烃的目的。烃 类富集装置见图 1 所示。

1.3 仪器及分析条件

美国菲尼根公司 TSQ-70GC/MS/MS 仪和 30m×0.25mm内涂 DB-5 石英毛细柱。色谱升温 程序:初温80,以3/min升至300,保持 20min。EI 电子轰击源,离子电流200μA;扫描方式: MID/GC/MS或GC/MS 全扫描。

2 结果与应用

2.1 天然气金刚烷类化合物的检出与定性

YA13-1和LD22-1天然气样的MID/GC/ MS分析均检测出单、双金刚烷系列化合物(图2), 各化合物的定性主要参考WingertWS(1992)、陈 军红(1994)发表的色谱保留时间和质谱数据,定性 结果列于表2,检测和定性结果表明天然气与油、岩 样品均存在金刚烷类化合物。

盆地	井号(m)	层位	性质 CO (%	CO2	\mathbf{N}_2 \mathbf{N}_2	02	C ₁ (%)	$\begin{pmatrix} C_2 \\ (\%) \end{pmatrix}$	C ₃ (%)	C_4		C ₅		c./ S c	δ¹³C	
				(%) ((%)	(%)				iC4(%)	$nC_4(\%)$	iC 5(%)	nC 5(%)	CI/ ZCn	C1	C2
琼东南	YA1312	DST5	GAS	8			89	2.01	0. 55	0.13	0.13	0.06	0.04	0.96	- 36.86	- 23.47
	YA1313	DST 5	GAS	8. 54	1.04		83.2	3. 94	1.81	0.47	0.46	0. 18	0.12	0. 93	- 39.36	- 26.47
莺歌海	LD2211	DST1	GAS	74.8	10.4	1. 53	12.5	0.5	0.03					0.96	- 26.92	- 21.97
	LD2211	DST4	GAS	0. 09	22.4	2. 24	73.3	1.14	0.33	0.08	0.08	0.05		0. 98	- 38.29	- 23.08
	LD2211	DST2	GAS	0.31	33. 48	0. 49	63.82	1.14	0.32	0.08	0. 08	0.05		0. 98	- 32.93	- 21.91

表1 莺琼盆地天然气组分和同位素参数表

图 1 冷冻富集重烃装置图 1. 取气瓶; 2. 减压阀; 3. 管线: 4. 加热器; 5. 收集器; 6. 容器; 7. 液氮

2.2 地质意义

金刚烷类化合物近年来在我国石油有机地化领 域受到注意。对高成熟的油气来说,一般常用的成熟 度参数已达到平衡或由于指标本身存在着局限性而 失效。因此如何确定高成熟油气成熟度成为一个急 待解决的问题。金刚烷类化合物为多环烃类在高温 热力作用下聚合反应的产物,其结构类似金刚石结 构的一类刚性聚合环状烃类化合物(图 3)。研究表 明(Wingert, 1992;陈军红等, 1995)金刚烷类化合物 的形成,一般不受有机质输入、生油岩沉积环境等因 素的影响,且一旦形成又非常稳定,不易受热力和生 物降解破坏作用的影响。因此它可作为高成熟油气 新成熟度指标和气源对比指标。研究天然气中的金 刚烷可望成为一种研究天然气成熟度的新方法、新 指标。

2.3 金刚烷指标的选择

陈军红(1994) 在塔里木盆地原油成熟度研究中 提出了二个金则烷指标,单金刚烷指标 [1-MA/ (1-MA + 2-MA)] 和双金刚烷指标 [4-MD/(1-MD+ 3-MD+ 4-MD)]。鉴于单金刚烷的沸点较低, 它在色谱图上的保留位置在 nC_{10} - C_{12} 之间。因此在 样品保存、抽提和分离过程中挥发损失影响可能较 大,稍有疏忽,就不易重复,故本文将采用双金刚烷 指标 参数值(保留位置在 nC_{15} - nC_{16} 之间)作为成 熟度指标。

峰号	化合物名称	分子量	基峰
1	金刚烷	136	136
2	1-甲基金刚烷	150	135
3	1,3-二甲基金刚烷	164	149
4	1,3,5-三甲基金刚烷	178	163
5	1,3,5,7-四甲基金刚烷	192	177
6	2-甲基金刚烷	150	135
7	1,4-二甲基金刚烷	164	149
8	1,4-二甲基金刚烷	164	149
9	1,3,6-三甲基金刚烷	178	163
10	1,2-二甲基金刚烷	164	149
11	1,3,4-三甲基金刚烷	178	163
12	1,3,4-三甲基金刚烷	178	163
13	1,2,5,7-四甲基金刚烷	192	177
14	1-乙基金刚烷	164	135
15	3甲基-1-乙基金刚烷	178	149
16	3,5-二甲基-1-乙基金刚烷	192	163
17	2-乙基金刚烷	164	135
18	双金刚烷	188	188
19	4-甲基双金刚烷	202	187
20	4,9-二甲基双金刚烷	216	201
21	1-甲基双金刚烷	202	187
22	1,4和2,4-二甲基双金刚烷	216	201
23	4,8-二甲基双金刚烷	216	201
24	三甲基双金刚烷	230	215
25	3-甲基双金刚烷	202	187
26	3,4-二甲基双金刚烷	216	201
Α	C2 金刚烷	164	149
В	C3 金刚烷	178	163
С	C ₅ 金刚烷	206	191
D	C5 金刚烷	206	191
Е	C5 金刚烷	206	191
F	C5 金刚烷	206	191

2.4 应用

为确定金刚烷指标所表达的有机质的成熟度, 必须将金刚烷指标与反映生油岩成熟度的指标和镜 煤反射率建立相应的关系。因此笔者对琼东南盆地 不同成熟阶段的生油岩(R°为1.0%~2.5%)进行 了金刚烷和 R° 的实测(表 3), 根据实测结果作出反 映金刚烷指标 与其 R° 的关系图(图 3)。琼东南盆 地生油岩的镜煤反射率 (R°) 与金刚烷指标 有线性 相关关系。根据这种关系划分出该区金刚烷指标 与镜煤反射率(R°)相对应的分布数值范围(表4)。 这样,利用图3和表4,就可以根据金刚烷指标确定 和划分天然气、凝析油及生油岩的成熟度。表5为应 用上述方法推断出的天然气中金刚烷与成熟度 R° 的对应关系值。由此可见 YA13-1 天然气成熟度 R⁰ 在 2.0% ~ 2.5% 范围内. 而 LD22 – 1 天然气成 熟度 $R^{\circ} > 3.0\%$, 同为高成熟天然气。

图 2 莺琼盆地天然气单、双金刚烷分布图

图 3 金刚烷化合物结构图 a. 单金刚烷;b. 双金刚烷

表 3 琼东南盆地生油岩金刚烷指标()与 R° 实测数值表

样品	深度 (m)	层位	指标 (%)	R°(%)
YA 13- 1- 1	3663.08	L	38	1.04
YA- a	4671.06~4671.36	HL	35	1. 55
YA- b	4749. 7 ~ 4750. 31	HL	32	1.6
ҮА- с	5108.75	L	56	2.24
YA- d	5329. 29	YC	59	2. 45

指标 为 4-M D/(1-M D+ 3-M D+ 4-M D)

表 4 琼东南盆地金刚烷指标() 与 R°相对应的分布范围

金刚烷指标 (%)	$R^{ m o}(~\%~)$
30 ~ 40	1.04 ~ 1.6
40 ~ 50	1.6~2.0
50 ~ 60	2.0~2.5
> 60	> 2.5

指标 为 4-M D/(1-M D+ 3-M D+ 4-M D)

表 5 莺琼盆地天然气金刚烷指标和成熟度(R°) 对应数值表

样品	深度 (m)	测试号	指标 (%)	指标 (%)	R°(%)
LD22- 1- 1	1486 ~ 1510	DST 1	77	73	> 3
LD22- 1- 1	972 ~ 985	DST 4	78	72	> 3
YA13- 1- 3	3797. 8 ~ 3017. 3	DST 5	79	55	2.0~2.5
YA13- 1- 2	3722. 5 ~ 3712. 5	DST 5			

指标 为 1-MA/(1-MA+ 2-MA)

指标 为 4-MD/(1-M D+ 3-MD+ 4-MD)

莺- 琼盆地 YA13-1和 LD22-1 天然气同位 素 $\delta^{3}C_{1}$ 分布范围为- 32.93‰~- 39.9‰左右(表 1),根据 M. Schoess (1983)甲烷碳同位素图版(图 5),YA13-1和LD22-1 同为海相高熟裂解气,其 成熟度 R° 为 2.01%~3.0%。从而验证了利用金刚 烷研究天然气成熟度的可靠性。

图 5 天然气成因分类图 (Schoell, 1983)

3 结论

(1) 用天然气重烃富集技术及 MID/GC/MS 分析技术从莺-琼盆地的天然气中检测出单、双金刚烷系列化合物。本方法有简单、灵敏度高、经济实用的特点。

(2) 天然气中金刚烷类化合物的检出,为用金 刚烷直接研究天然气成熟度奠定了基础。

(3) 琼东南盆地生油岩中金刚烷指标())与镜 煤反射率(R°)分布关系的建立,不仅实现了根据金 刚烷指标确定和划分该区凝析油、天然气的成熟度, 而且对于无法测定镜煤反射率的生油岩,也可以利 用测定金刚烷指标来研究生油岩的有机质成熟度。

(4) 天然气中金刚烷指示 YA13-1和 LD221 同为高成熟天然气, YA13-1天然气成熟度 R°为
2.0%~2.5%, 而 LD22-1天然气成熟度 R°大于
2.5%。

致谢:本项工作得到了中科院广州地化所陈军 红博士、盛国英研究员的指导,在此致以衷心的感谢。 参考文献

- Wingert W S. GC- MS analysis of diamondoid hydrocarbons in Smack over Petroleums. *Fuel*, 1992, 71:37 ~ 43
- 2 陈军红等. 塔里木盆地原油成熟度研究及地球化学意义. 中科院 广州地球化学研究所研究年报, 1995
- 3 赵红等.用 MID/GC/MS 检测原油和烃源岩抽提物中金刚烷类化 合物及地质意义探索.质谱学报,1994,4:43~48

4 傅家谟等.煤成烃地球化学.北京:科学出版社,1992,292~294

(收稿日期: 1997年2月4日)

ANALYSIS OF DIAMONDOID HYDROCARBONS IN NATURAL GAS AND ITS APPLICATION TO YING-QIONG BASIN

Fu Ning Yu Xiaoguo Zhao Shengrong

(China Off shore Oil Exp loration and Development Research Centre, Hebei)

Abstract

The diamondoid hydrocarbons in natural gas were detected by technique of heavy hydrocarbon concentration of natural gas and MID/GC/MS analysis. On basis of measured diamantane and vitrinite reflectance of source rocks in Qiongdongna basin, the relationship between diamantane index and vitrinite reflectance (R°) were established. Undoubtedly, it will show great significance for determining the maturity of the condensate and natural gas of Ying-Qiong basin.

(上接291页)

NUMERICAL MODELING ON PRESSURIZING CAUSED BY HYDROCARBON GENERATION

Xu Sihuang Mei Lianfu Yuan Caiping

(China University of Geosciences, Wuhan 430074)

Abstract

Generation of hydrocarbon from kerogen is one of important genetic types of abnormal pressure in source rock. Because the pressurizing caused by generation was taking place during the period of generating and expulsion, it is difficult to recover or calculate it directly. Usually it can be measured by numerical modeling. The mathematical model of pressurizing was built according to the physico-chemical mechanism of generation. It shows that the more the generated hydrocarbon, and the more compact the source rock, the larger the intensity of pressurizing. The pressurizing caused by gas generation is stronger than that caused by oil generation. The pressurizing caused by generation can be modeled, and also the expulsion through microfracture caused by the pressurizing can be recovered by using this mathematical model. Numerical modeling on pressurizing caused by generation has been effectivelg applied in several typical petroleum basins in China.