熵分析在单井相划分中的应用

张小莉

(西北大学地质系,西安 710069)

熵作为随机过程中一种不确定性程度的量度, 广泛应用在地质学领域。本文应用马尔柯夫链的熵分析方法, 分析了邓 1- 邓 5 并不同层位地层的系统熵及其各种岩性的前熵、后熵, 并推测了各层位可能的沉积相。

关键词 熵 沉积相 转移概率矩阵 作者简介 张小莉 女 28岁 讲师 石油地质

0 前言

测井分析中,通过对单井测井曲线作有序量最 优分割处理,再经因子分析、聚类分析形成一系列的 测井相。测井相通过模式判别的方法,由区域性的岩 - 电关系库,转换成相应的岩性状态。各岩性状态之 间有序组合形成该井的连续剖面。该剖面较钻井录 井剖面、取心剖面具岩性深度准确、岩性不混层、剖 面系统完整等优点。

应用马尔柯夫链的熵分析方法,研究各岩性状态及其之间的组合关系可以分析各个层位的岩性旋回,推测其相应的沉积环境,进而为油气的生储盖评价提供有利依据。本文正是应用熵分析的方法,以济源坳陷后邓构造邓1-邓5井测井解释岩性剖面为例,分析了5口井各层位的岩性旋回及沉积环境。

1 济源坳陷区域地质特征

济源坳陷是华北盆地西南端的一个中新生界沉 积盆地,凹陷内沉积的地层有三叠系、侏罗-白垩系 及第三系,主要岩性有砾岩、砂岩、粉砂岩、泥质粉砂 岩、砂质泥岩、粉砂质泥岩、泥岩等,该坳陷内后邓构 造中邓1-邓5井钻遇以上地层,且钻井取心总进 尺485m,岩心总长427.9m,平均收获率92%,可见 取心井段长,收获率高,以岩心为准,进行岩电转换 形成的单井剖面系统、连续且质量可靠。

2 马尔柯夫链的熵分析

2.1 马尔柯夫链的转移概率矩阵

2.1.1 马尔柯夫链的数学模型

一组地层中沉积的若干岩性称为状态。在实际 地层岩性分析中,岩性状态构成一个有限的集合 $(a_1, a_2, ..., a_m)$,设某一地层剖面 T_0, T_1, T_2 时刻岩 性状态分别为 a_x, a_y, a_z ,其中 x, y, z (1,2,...,m), 如地层按时间 T_0, T_1, T_2 由下向上沉积,那么由地 质学理论可知, T_2 时刻沉积的岩性 a_x 只与前一层 的 a_y 有关,而与更前的 a_x 无关,这一理论正是马尔 柯夫链的数学基础。

2.1.2 转移概率矩阵

马尔柯夫链为一种随机过程,应用一阶马尔柯 夫链可知,假如时刻 Tⁿ 地层处于状态 aⁱ,到 Tⁿ⁺¹时 刻地层转移到状态 aⁱ 的概率为:

 $p \{ T_{n+1} = a_j | T_n = a_i \} = p_{ij}$

那么从任何一状态出发, 经过一次转移后, 必出 现该系统中的所有状态的一个, 故有 $\sum_{j=1}^{m} p_{j} = 1(i, j)$ = 1, 2, ..., m), 其中包括系统停留原状态的概率 p_{ii} , 由于 p_{ij} 是概率事件, 因此, 0 p_{ij} 1。

应用马尔柯夫链分析岩性转移的核心为建立转 移概率矩阵。转移概率矩阵常应用统计方法求得,即 对于一地层剖面,统计不同岩性岩层之间转移频数 矩阵(记为*G*),该矩阵中对线元素为*O*。从*G*可求得 向上转移概率矩阵: $p_{ij} = G_{ij}/N_{i+1}$,向下转移概率矩阵: $q_{ij} = G_{ij}/N_{i+j}$,式中 G_{ij} 为转移频数矩阵G的元素, $N_{i+1}N_{i+j}$ 分别为转移频数矩阵G之行和、列和。

图 1 6 种模式的前熵、后熵关系图 a. 理想的非对称旋回; b. 上部缺失的非对称旋回; c. 下 部缺失的非对称旋回; d. 由旋回单元形成的一般非对 称旋回; e. 由旋回单元形成的对称旋回; f. 强烈混乱的 旋回

2.1.3 多步转移概率矩阵

切普曼-柯尔莫哥洛夫方程为利用 P 来计算 从状态 *i* 经过 *k* 步转移到状态 *j* 的新转移概率矩阵 的公式:

$$p_{j}^{k} = \sum_{r=1}^{k} p_{r}^{n} p_{rj}^{k-n} (1 \quad n \quad k)$$

它表示了从状态 i 经过 k 步转移到状态 j 的概 率转移过程。即先从 i 经过 n 步转移到 r(r=1,2, ...,k),再由状态 r 经(k-n) 步转移到状态j,显然有 $P_{2=}P^{2}$,同理 $P_{k=}P^{k}$ 。

当 r 不断增大时, P 中各行向量趋于一致, 这一 行向量为不变向量或固定向量, 它反映了各岩性在 地层剖面中所占的百分比, 称为极限概率。极限概率 为

$$\lim_{k} p_{j}^{k} = p_{j}(\text{const})$$

2.2 马尔柯夫链的熵分析

熵是作为一种不确定性程度的量度而提出的, Isamu Hattori提出了用前熵值和后熵值来研究沉 积旋回的6种旋回模式(如图1所示),其中:

前熵:
$$H(pre)[i] = -\sum_{j=1}^{m} q_{ji} \log_2 q_{ji}$$

后熵: $H(post)[i] = -\sum_{j=1}^{m} p_{ij} \log_2 p_{ij}$

结合马尔柯夫链的实际意义,有下列几种性质:

(1) 后熵

A: 若 $H(p \ ost)[i] = 0$,则转移概率矩阵 p_{ij} 中之 一是 1(即其他一切都是 0),这表明状态 i 行使着一 种确定性影响或控制于它的后继状态的选择,即状态 i 要为一确定的状态从上边所代替。

B: 若 H (p ost) [i] 较大, 表明状态 i 有记忆力是 不清楚的, 要有较多的状态可以继承其后。

C: 若 *H*(*post*)[*i*]较小, 表明状态*i* 有记忆力, 且这种记忆力随 *H*(*post*)[*i*] 减小而增加。

(2) 前熵

A: 若 H (pre)[i] = 0, 即状态 i 要为一确定状态 从下边代替。

B: 若 *H* (*pre*) [*i*] 较大, 状态 *i* 出现较多地独立 于它前边的岩性。

C: 若 *H* (*p re*) [*i*] 较小, 状态 *i* 的出现较少地独 立于它前边的岩性。

综合考虑 H(post)[i]和 H(pre)[i],则知它们 适宜于作为描述状态 i 出现以后和出现以前相邻接 的岩性指标,有以下几种性质:若 H(pre)[i] H(post)[i],说明状态 i 的继后岩性状态比状态 i 的 居前岩性的出现有更大的确定性。相反,若 H(post)[i] H(pre)[i],则状态 i 对它的居前岩性依赖性 较状态 i 影响于其继后岩性的能力强。

另外,一般用系统熵 *H*(*sys*) 来研究岩性状态的 沉积过程。

$$H(sys) = -\sum_{i=1}^{m} \sum_{j=1}^{m} \mathcal{Y}_{ij} \log_2 \mathcal{Y}_{ij}$$
$$\nexists \mathbf{P}: \mathcal{Y}_{ij} = G_{ij} / \sum_{i=1}^{m} \sum_{j=1}^{m} G_{ij}$$

系统熵的大小反映地层序列中岩石组合变化的 关系。前人根据系统熵值的大小及其状态数目,绘出 了岩相序列的沉积环境与熵的关系图(图2),此图 件同样适用于陆相环境(景毅等,1986)。

图 2 岩相序列的沉积环境与熵关系图 1.最大熵; 2. 煤测量继承的熵; 3. 河流冲积继承的熵; 4. 浅海继承的熵; 5. 复理层沉积的熵; 6. 最小熵

3 应用熵分析研究单并沉积相

3.1 单井相划分

我们对邓 1- 邓 5 井不同层位的各个岩性状态 及其相应熵、系统熵进行了求取,并根据 H(p ost) 和 H(p re)的大小作出其相应的熵关系图(图 3)。

不同层位各种岩性的极限概率反映出其在剖面 中出现的程度,邓1-邓5井各层位地层岩性的极 限概率如表1所示。根据不同层位地层各岩性极限 概率、前、后熵关系图及岩性序列沉积环境与熵关系 图,推测出5口井不同层位可能的主要沉积相。其中 第三系沙河街组二段地层以河泛平原相为主,沙河 街组三-四段以河泛平原相或河道沉积为主,孔店 组地层以河泛平原相为主,侏罗-白垩系地层以湖 泊扇三角洲相为主,而三叠纪晚期则以滨浅湖相为 主。地质分析结果表明有利的生油岩系分布在三叠 系地层中,与熵分析结果基本相符。

3.2 应用效果分析

通过马尔柯夫链的熵分析,可推出可能的沉积 相类型,邓1井830~1200m 井段地层,熵分析结果

表 1 邓 1- 邓 5 井各层位岩性极限概率

井 号	层	井 段 (m)	泥岩	粉砂质泥岩	砂质泥岩	泥质粉砂岩	粉 砂 岩	细 砂 岩	小 砾 岩	灰质砂岩	备注
	Ν	180 ~ 347.5	0.0035					0. 50000	0. 3333	0.0833	
邓 1 井	$E s^2$	347. 5 ~ 534. 7	0.4513	0.0615		0.0180	0. 2871	0. 1615			灰质泥岩 0.0205
	$E s^{3+4}$	534. 7 ~ 832	0.4509	0.0196	0.0196		0.3726	0.1177			灰质粉砂岩 0.01%
		832 ~ 1200	0.4820	0.0120			0.0241	0. 4819			
邓 2 井	$E s^2$	230 ~ 583	0.4635	0.0271		0.0066	0.4605	0.0356			页 岩 0.0066
	$E s^{3+4}$	583 ~ 930	0.3904	0.0412	0.0427	0.0514	0.2368	0.2375			
		930 ~ 1127	0.4876					0.4877			
邓	$E s^2$	180 ~ 627	0. 4951	0. 0194			0.4370	0. 0291		0.0097	砾状砂岩 0.0097
3 井	Es ³⁺⁴	627 ~ 1560	0. 4757	0.0105	0.0035	0.0140	0. 4719	0.0245			
邓 4 井	$E s^2$	220 ~ 470	0.4326		0.0769		0.0270	0.3630	0.1004		
	E <i>s</i> ^{3+ 4}	470 ~ 1680	0.3655	0. 1273		0.0375	0.4014	0.0606	0.0076		
	$\mathrm{E}k$	1680- 2200	0.4260	0. 2692			0.3048				
R	$E s^2$	505 ~ 1139. 5	0.4576	0.0678		0.0424	0.3390			0.0932	
	E <i>s</i> ^{3+ 4}	1139. 5 ~ 1814	0. 4796	0.1507		0. 1165	0. 2189	0.0343			
5	$\mathrm{E}k$	1814 ~ 2005	0.4635	0.0244		0.3902	0.0975		0.0244		
井	J-K	2005 ~ 2682	0.4274	0.0323		0.0403	0. 1210	0.0807		0. 1936	灰质泥岩 0.0800
	Т	2682 ~ 3481.82	0.4314	0.0303		0.0458	0.3258	0.0229		0.0872	碳质泥岩 0.0365

图 3 邓 1- 邓 5 井各层位的熵关系图

旋回模式为 A-2型,系统熵大小和状态数关系反 映为河流冲积继承熵的范围,剖面中砂岩、粉砂岩、 泥岩的极限概率分别为0.4819、0.0241、0.4820,判 定为河道充填沉积为主。该井段中岩心取样作粒度 分析,粒度参数和粒度概率曲线的三段式特征(图 4a),反映出应为河道充填沉积类型。另外,该井段 830~840m 井段中,地层倾角测井矢量图中的绿- 红- 蓝模式及自然伽马、自然电位曲线的箱状特征 (图 4b、c),均反映出河道充填沉积的特征。由此可 见,地质分析、测井曲线和熵分析结果之间可以互相 印证;其他井段及邓 2- 邓 5 井各层位分析结果对 比如表 2 所示,熵分析结果与地质划分基本吻合。那 么应用熵分析方法,具有快速、准确的特点,可以为 油气的勘探、开发提供一些有利的相带。

425

表 2 邓 1- 邓 5 井熵分析结果与地质分析结果对比表

# =	日位	井 段 (m)	旋回模式	状态数	玄纮熵	体公长况和相	地	质 分	析
7 5	医证				尔 尔和	狗力们 几代伯	相	亚	相
	$\mathbf{E}s^2$	347. 5 ~ 534. 7	A- 4	6	2.7825	河泛平原	河	江洲	क ह
邓1井	T 3+ 4	534. 7~ 832	A- 4	6	2. 5237	河泛平原		泛画半原	
	Es	832 ~ 1200	A- 2	4	2.4807	河道充填沉积	流	河	道
	Es^2	230~583	A- 4	6	2.8976	河泛平原	河	にます	ज क
邓2井	E 2:4	583~930	С	6	3.3480	河泛平原		泛温·	半原
	Es ^{5+ 4}	930 ~ 1127	A- 2	3	2.3300	河道充填沉积	流	河	道
7 77 o 11	Es^2	$180 \sim 627 \delta$	A- 3	6	2.8433	洪 积	洪积	扇	中
か <u>3</u> 11	$E s^{3+4}$	627 ~ 1560	A- 2	6	2.6408	河道充填沉积	河流	河	道
	Es^2	220~470	A- 3	5	2.1460	河泛平原		泛滥	平原
邓4井	Es ³⁺⁴	470 ~ 1680	С	6	3.0362	河泛平原	河	泛滥平原 夹含废弃河道	
	$\mathrm{E}k$	1680 ~ 2200	A- 4	3	2.3968	河泛平原	1716	泛滥	平原
	Es^2	505~1139.5	A- 2	5	2.8688	河道充填沉积		河	道
	Es^{3+4}	1139. 5~ 1814	A-3	5	2.9965	河泛平原	河	泛滥	平原
邓5井	$\mathrm{E}k$	1814 ~ 2005	В	5	2. 6259	河泛平原	流	泛滥 [:] 夹含决	平原 R口扇
	J– K	2005 ~2682	В	8	2.9399	湖泊扇三角洲	湖	扇三類	角洲
	Т	2682~3481.82	A- 4	7	3.2818	滨浅湖	泊	滨浅	湖

参考文献

1 景毅, 王世称等. 马尔柯夫过程在地质学中的应用. 北京: 地质出版社, 1986: 34~75

(收稿日期: 1997年6月26日)

THE APPLICATION OF ENTROPY ANALYSIS TECHNIQUE ON SINGLE- WELL FACIES DIVISION

Zhang Xiaoli

(Northwest University, Xian 710069)

Abstract

Entropy is a non- definability measurement in a random process and it is applied to the role of geology, In this paper, Entropy analysis in Markov chains was applied to analysis the systerm entropy and lithic pre- entropy, post- entropy in every stratohorizon in Deng 1 to Deng 5 well, and then guessed every stratohorizon probability sedimentray facies.