文章编号:1001 - 6112(2006)01 - 0091 - 04

# 苏北盆地 T 油田碳酸盐岩 储层压力敏感性研究

# 谈士海<sup>1,2,3</sup>,韦建伟<sup>3</sup>

(1.中国科学院 地质与地球物理研究所,北京 100029;2.西北大学,西安 710069;3.中国石化 华东分公司采油厂,江苏 泰州 225300)

摘要:对苏北盆地 T油田深层石炭系低渗碳酸盐岩 24 个水平和垂直岩样进行了储层压力敏感性实验研究,分析了有效压力与孔隙 度和渗透率关系,结果表明:1)石炭系储层孔隙压失量与孔隙度之间有比较好的相关性,总体上为:孔隙度高,压失量低;孔隙度低, 压失量高。2)渗透率的压失程度与岩样孔渗条件有密切的关系,孔渗性能好,伤害系数小;孔渗透性能差,伤害系数大。 关键词:有效压力;孔隙度;渗透率;碳酸盐岩;石炭系;苏北盆地;

中图分类号:TE311 文献标识码:A

储层岩石骨架通常承受很高的上覆岩层压力, 上覆岩层压力与岩石孔隙内流体压力(地层压力)之 差,称为有效压力<sup>[1,2]</sup>,即岩石骨架所承受的压力。 油层在钻井、采油过程中,由于有效压力的变化,会 使储层的储集空间发生形变,亦即地层压力或近井 底压力下降,将导致储层中某些裂缝或孔隙闭合,造 成地层渗透率下降,使油井开采条件变差,油井产能 下降。同时,这种岩石孔隙形变往往是部分不可逆 的。不合理的开采所造成的渗透率下降,通常是难 以恢复的,最终导致采收率损失。因此,在实验室内 对储层岩石进行压力敏感性研究,测定不同有效压 力作用下岩石物性参数的变化特征,对指导异常高 压、低渗碳酸盐岩油藏的开发有着重要的意义。

## 1 储层压力敏感性概述

上覆岩层的压实作用对储层岩石物性的影响, 可以在实验室里用专门的仪器对岩样进行模拟测 量。一般认为,对石英颗粒分选性较好和胶结物含 量较低的砂岩而言,孔隙度几乎不会发生不可逆的 变化;而对分选性差碎屑和胶结物含量高的砂岩以 及白云岩(方解石 < 10 %)、石炭岩(白云岩 < 5 %), 其孔隙度会发生十分明显的不可逆变化。对不同的 储层岩石,其孔隙伤害系数的变化范围相当大,一般 可在 0.2 ×10<sup>-3</sup> ~ 11 ×10<sup>-3</sup> MPa<sup>-1</sup>范围变化<sup>[3]</sup>。

岩石的可逆或不可逆变形,都将引起岩石的孔 隙度和渗透率的变化。当在弹性形变范围内变化 时,岩石孔隙度和渗透率的变化都具有可逆的特征; 当应力超过岩石的弹性极限时,渗透率和孔隙度的 变化就成为不可逆的。因此,不论是油田开发还是 气田开发,流体渗流过程中必需考虑孔隙度和渗透 率的不可逆变化。尤其是异常高压油气藏,渗透率、 孔隙体积随地层压力的变化而发生的变化情况,就 成为开发过程中重要的研究对象。

根据国内外的实验测试资料表明<sup>[4~6]</sup>,岩石有 效渗透率对有效压力是十分敏感的。在地层条件 下,岩样的渗透率值可能比实验室常规测定值小 25%,有的甚至小50%以上;而岩样孔隙度的变化 较小,一般不超过10%。因此,在利用实验室测定 的岩样特性资料进行矿场计算时,不能忽略由于压 实作用而导致的岩石渗透率的变化。T油田石炭系 碳酸盐岩油藏储层岩石主要为孔隙胶结和接触式胶 结,胶结物主要为亮晶方解石和泥晶方解石,会发生 弹-塑性变形。

# 2 储层压力敏感性实验研究

钻井、采油等都会对油藏应力状态产生扰动,而 地层渗透率、孔隙度和压缩性等都与有效应力有着 直接的联系。Terzaghi (1925)认为孔隙介质的力学 性质只取决于有效压力<sup>[7]</sup>,据此我们可得出结论:如 果周围应力和孔隙压力变化的大小、方向相同,岩石 性质将保持不变。这样,降低孔隙压力和提高围压 效果相同,即提高围压来研究岩心渗透率降低的过 程,相当于岩石渗透率随孔隙压力(地层压力)降低 而降低的过程。实际上,通过提高围压或降低孔隙

收稿日期:2005 - 07 - 25;修订日期:2005 - 11 - 25。

作者简介:谈士海(1965 ---),男(汉族),江苏仪征人,高级工程师、博士生,主要从事油气勘探开发工作。

压力来增加有效应力所达到效果是一致的,并不影 响岩样的压敏效应实验结果。在实验中,提高围压 比降低孔隙压力更容易实现,故采用改变围压来实 现有效应力的改变。

#### 2.1 实验原理

在油藏开发中,随着油藏压力的下降,储层岩石 各向应力会有较大变化。在常规岩心分析中,岩石渗 透率是在较小的静水压力下测量的。大量的实验已 经表明,轴向应力差可以进一步影响到渗透率,尤其 当岩石趋于破坏时,这种影响愈明显。所以,在模拟 地层地应力条件下渗透率变化的研究显得尤为重要。

为了对油藏条件下渗透率等参数的变化进行研究,应将岩石渗透率测试系统与岩石力学三轴实验 测试系统很好地结合,这样可为模拟地层应力条件 测量地层渗透率提供必要条件。实验采用增加围压 使得地层有效应力增加的方法来模拟由于地层孔隙 压力不断下降而引起岩石骨架所承受的有效应力逐 渐增加,从而测得地层渗透率的变化。

2.2 实验流程

模拟油藏条件下渗透率试验的岩心,是在全直 径岩心上垂直于层理和平等于层理方向各钻取直径 为 2.5 cm,长度为 10 cm 的岩心段。两个端面平行 切割后,再经过研磨达到美国材料试验学会 (ASTM)和国际岩石力学学会(ISRM)的标准。

图 1 为实验装置示意图,岩样通过端帽和隔套 密封,与外界围压系统隔绝,地层的水平应力由流体 加围压得到,上覆层应力通过轴向活塞施加,不同的 应力条件通过围压、轴压的变化得到。

T油田石炭系碳酸盐岩油藏中部原始地层压力 为80.0 MPa,上覆岩压为109 MPa(油层深4350 m, 灰岩密度取2.5 g/cm<sup>3</sup>),故原始地层条件下的有效压 力为29 MPa 左右。实验中选择最大工作压力 38 MPa。



图 1 渗透率测试示意 Fig.1 Sketch map of measuring for permeability

本实验装置可在同一应力条件下测量垂向及水 平方向渗透率。首先,当应力达到某一目标值后,保 持一段时间使应力达到平衡,打开阀 V<sub>1</sub>、V<sub>2</sub>,这样 通过测量流体的流量即可计算出岩样垂向渗透率。 同样地,关闭阀 V<sub>1</sub>、V<sub>2</sub> 而打开 V<sub>3</sub>、V<sub>4</sub>,待应力平衡 后就可测得岩样水平渗透率。

## 3 实验结果及分析

根据所取岩心的有效压力实验资料分析,岩石 在地层有效压力条件下,孔隙度和渗透率压敏现象 比较普遍,尤其渗透率更加明显。

#### 3.1 有效压力与孔隙度关系

对 12 个岩样进行了有效压力孔隙度测定实验, 岩样不加有效压力时的孔隙度为 2.2%~9.7%,实 验结果见表 1。在压力为 38 MPa 时,石炭系储层水 平岩样孔隙度损失率为 7.6%~32.7%,孔隙度最 大净压失量为 0.7~1.7%;垂直岩样孔隙度损失率 为 9.0%~36.4%,孔隙度最大净压失量为 0.6~ 0.8%。可见,石炭系储层孔隙具有一定的压失性, 而且孔隙度压失量与孔隙度之间有比较好的相关关 系。孔隙度高,压失量低,孔隙度低,压失量高,且在 中低压阶段(有效压力 < 15 MPa),随有效压力增 加,孔隙压失明显,而后期减缓(图 2)。其孔隙压失 量在储量计算时应予以考虑。

孔隙压失主要发生在中低压阶段,在有效压力为 10 MPa 时已完成总压失量的 60.9%;当有效压力由 10 MPa 增至 38 MPa 时,孔隙压失量只占 39.1%;特 别是当有效压力由 25 MPa 增加到 38 MPa 时,孔隙 压失量只占 13.4%,进入孔隙的缓慢压失阶段。

### 3.2 有效压力与渗透率关系

对另 12 个岩样进行了有效压力与渗透率关系 实验,结果如表 2。渗透率与孔隙度一样,随着围压 的增大而逐渐缩小,当有效压力达到 38 MPa 时,水 平岩样渗透率损失率为 50%~76.3%,平均为 65.7%;渗透率最大压失量为(0.003~0.046) ×  $10^{-3}\mu m^{2}$ ,平均为 0.027 × $10^{-3}\mu m^{2}$ 。垂直岩样渗透 率损失率为 11.0%~52.9%,平均为 24.1%;渗透 率最大压失量为(0.007~0.061) × $10^{-3}\mu m^{2}$ ,平均 为 0.021 × $10^{-3}\mu m^{2}$ 。渗透率的压失程度与岩样孔 渗条件有密切的关系,总体上看,孔渗性能好,损失 率小;孔渗性能差,损失率大。且在中低压阶段(有 效压力 < 15 MPa 前),随有效压力增加,渗透率损 失率较大(明显),而后期变缓(图 3)。

由图 3 可见,石炭系岩石渗透率有一定的压失 性,而且渗透率压失量与渗透率之间有比较好的相

| and i marysis data or relationship between effective pressure and porosity |          |           |     |     |     |     |     |             |            |                                  |  |
|----------------------------------------------------------------------------|----------|-----------|-----|-----|-----|-----|-----|-------------|------------|----------------------------------|--|
|                                                                            |          | 有效压力/ MPa |     |     |     |     |     |             |            |                                  |  |
| 岩样号1)                                                                      | 井深/ m    | 0         | 5   | 10  | 15  | 25  | 38  | 最大压<br>失量 % | 最大损失<br>率% | 平均孔隙度伤害系数<br>/ MPa <sup>-1</sup> |  |
|                                                                            |          | 孔隙度,%     |     |     |     |     |     | <u></u> , ~ | 1,,,,      |                                  |  |
| A1                                                                         | 4 348.28 | 5.2       | 4.9 | 3.8 | 3.7 | 3.6 | 3.5 | 1.7         | 32.7       | 0.008 6                          |  |
| A2                                                                         | 4 348.98 | 5.3       | 4.4 | 4.4 | 4.3 | 4.3 | 4.2 | 1.1         | 20.8       | 0.005 5                          |  |
| A3                                                                         | 4 353.54 | 3.5       | 2.8 | 2.6 | 2.5 | 2.5 | 2.4 | 1.1         | 31.4       | 0.008 3                          |  |
| A4                                                                         | 4 359.37 | 9.7       | 9.2 | 9.0 | 8.9 | 8.9 | 8.8 | 0.9         | 9.3        | 0.002 4                          |  |
| A5                                                                         | 4 362.64 | 9.2       | 8.9 | 8.8 | 8.7 | 8.6 | 8.5 | 0.7         | 7.6        | 0.002 0                          |  |
| A6                                                                         | 4 365.26 | 8.4       | 8.0 | 7.9 | 7.7 | 7.7 | 7.6 | 0.8         | 9.5        | 0.002 5                          |  |
| 水平样平均值                                                                     |          | 6.9       | 6.4 | 6.1 | 6.0 | 5.9 | 5.8 | 1.1         | 15.9       | 0.004 9                          |  |
| B1                                                                         | 4 374.42 | 6.7       | 6.4 | 6.4 | 6.3 | 6.3 | 6.1 | 0.6         | 9.0        | 0.002 4                          |  |
| B2                                                                         | 4 400.61 | 5.2       | 5.1 | 4.8 | 4.7 | 4.6 | 4.6 | 0.6         | 11.5       | 0.003 0                          |  |
| B3                                                                         | 4 408.90 | 2.6       | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 0.6         | 23.1       | 0.006 1                          |  |
| B4                                                                         | 4 418.14 | 2.9       | 2.6 | 2.3 | 2.2 | 2.2 | 2.1 | 0.8         | 27.6       | 0.007 3                          |  |
| B5                                                                         | 4 431.15 | 2.3       | 2.1 | 1.9 | 1.7 | 1.7 | 1.6 | 0.7         | 30.4       | 0.008 0                          |  |
| B6                                                                         | 4 435.43 | 2.2       | 1.8 | 1.8 | 1.6 | 1.5 | 1.4 | 0.8         | 36.4       | 0.009 6                          |  |
| 垂直样平均值                                                                     |          | 3.7       | 3.4 | 3.2 | 3.1 | 3.1 | 3.0 | 0.7         | 18.9       | 0.006 1                          |  |

1) A \*为水平样, B \* 为垂直样。



#### 图 2 孔隙度与有效压力关系曲线

Fig. 2 Curves of relationship between porosity and effective pressure



#### 表 1 有效压力孔隙度分析数据表

 Table 1
 Analysis data of relationship between effective pressure and porosity

图 3 渗透率与有效压力关系曲线

Fig. 3 Curves of relationship between permeability and effective pressure

| 表 2   | 有效压力渗透率分析数据表 |
|-------|--------------|
| 1 C # |              |

| Table 2 | Analysis data | ı of relationshi | p between effective | pressure and | permea bil ity |
|---------|---------------|------------------|---------------------|--------------|----------------|
|         |               |                  |                     |              |                |

|                   |          | 有效压力/ MPa                            |       |       |       |       |       |             |            | 亚内 3 陷 度             |
|-------------------|----------|--------------------------------------|-------|-------|-------|-------|-------|-------------|------------|----------------------|
| 岩样号 <sup>1)</sup> | 井深/ m    | 0                                    | 5     | 10    | 15    | 25    | 38    | 最大压<br>失量 % | 最大损失<br>率% | 伤害系数                 |
|                   |          | 渗透率/10 <sup>-3</sup> µm <sup>2</sup> |       |       |       |       |       | 八主, //      |            | / MPa <sup>- 1</sup> |
| C1                | 4 421.25 | 0.063                                | 0.044 | 0.033 | 0.028 | 0.021 | 0.017 | 0.046       | 73.0       | 0.019                |
| C2                | 4 425.62 | 0.038                                | 0.025 | 0.019 | 0.015 | 0.011 | 0.009 | 0.029       | 76.3       | 0.020                |
| C3                | 4 427.29 | 0.004                                | 0.003 | 0.002 | 0.002 | 0.001 | 0.001 | 0.003       | 75.0       | 0.018                |
| C4                | 4 429.97 | 0.042                                | 0.034 | 0.030 | 0.027 | 0.023 | 0.020 | 0.022       | 52.4       | 0.014                |
| C5                | 4 430.81 | 0.030                                | 0.025 | 0.022 | 0.020 | 0.017 | 0.015 | 0.015       | 50.0       | 0.013                |
| C6                | 4 432.15 | 0.063                                | 0.044 | 0.033 | 0.028 | 0.021 | 0.017 | 0.046       | 73.0       | 0.019                |
| 水平样平均值            |          | 0.040                                | 0.029 | 0.023 | 0.020 | 0.016 | 0.013 | 0.027       | 67.5       | 0.017                |
| D1                | 4 306.43 | 0.047                                | 0.043 | 0.042 | 0.040 | 0.038 | 0.036 | 0.011       | 23.4       | 0.006                |
| D2                | 4 308.77 | 0.202                                | 0.187 | 0.170 | 0.158 | 0.150 | 0.141 | 0.061       | 30.2       | 0.008                |
| D3                | 4 317.31 | 0.048                                | 0.044 | 0.043 | 0.042 | 0.042 | 0.041 | 0.007       | 14.6       | 0.004                |
| D4                | 4 335.22 | 0.034                                | 0.025 | 0.022 | 0.020 | 0.018 | 0.016 | 0.018       | 52.9       | 0.014                |
| D5                | 4 355.57 | 0.145                                | 0.140 | 0.138 | 0.137 | 0.134 | 0.129 | 0.016       | 11.0       | 0.003                |
| D6                | 4 442.01 | 0.046                                | 0.040 | 0.038 | 0.036 | 0.033 | 0.031 | 0.015       | 32.6       | 0.008                |
| 垂直样平均值            |          | 0.087                                | 0.080 | 0.076 | 0.072 | 0.069 | 0.066 | 0.021       | 24.1       | 0.007                |

1) C \* 为水平样, D \* 为垂直样。

关性,渗透率高,压失量低;渗透率低,压失量高。而 且,石炭系储层渗透率的压失主要发生在中低压阶 段,在有效压力为 10 MPa 时平均已完成总压失量 的 64.1%;当有效压力由 10 MPa 增至 38 MPa 时, 压失量只占 35.9%;有效压力 > 25 MPa 以后,压失 量已很少(只占 10.9%),可视为地层条件下的渗透 率实际值。

总之,储层渗透率的可压失性较强,压失量比较 大,在进行地下储层渗透性能评价以及油气开发动 态预测中应予以重视。

# 4 小结

 T油田石炭系碳酸盐岩油藏储层岩石主要为 孔隙胶结和接触式胶结,胶结物主要为亮晶方解石
 和泥晶方解石,会发生弹-塑性变形。

2)石炭系储层孔隙压失量与孔隙度之间有比较 好的相关性,总体上为:孔隙度高,压失量低;孔隙度 低,压失量高。且在中低压阶段(有效压力 < 15 MPa),随有效压力增加,孔隙度伤害系数较大(明 显),而后期减缓。

3) 渗透率的压失程度与岩样孔渗条件有密切的 关系,孔渗性能好,伤害系数小;孔渗透性能差,伤害 系数大。且在中低压阶段(有效压力 < 15 MPa),随有 效压力增加,渗透率损失率较大(明显),而后期变缓。

#### 参考文献:

- 1 戈尔布诺夫 A T.异常油田开发[M]. 张树宝译.北京:石油工 业出版社,1987
- 2 杨满平. 低渗透变形介质油藏合理生产压差研究[J]. 油气地质 与采收率,2004,11(5):41~43
- 3 阮 敏,王连刚. 低渗透油田开发与压敏效应[J]. 石油学报, 2002,23(3):73~76
- 4 杨满平,李治平.油气储层多孔介质的变形理论及实验研究[J].
   天然气工业,2003,23(6):110~111
- 5 奇林格 G V. 碳酸盐岩[M]. 冯增昭译. 北京:石油工业出版社, 1982
- 6 刘中春,岳湘安,王正波.低渗透油藏岩石物性对渗流的影响分析[J].油气地质与采收率,2004,11(6):39~41
- 7 埃克诺米德斯 MJ. 油藏增产措施[M]. 康德泉译. 北京:石油工 业出版社,1991

# PRESSURE SENSITIVITY STUDY OF HIGH PRESSURE AND LOW-PERMEABILITY CARBONATE RESERVOIR IN TOILFIELD, THE NORTH JIANGJU BASIN

Tan Shihai<sup>1,2,3</sup>, Wei Jianwei<sup>3</sup>

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
 Northwest University, Xian, Shannxi 710069, China;
 The Production of Huadong company, SINOPEC, Taizhou, Jiangsu 225300, China)

Abstract : The results of pressure sensitivity experiments for 24 horizontal and vertical core samples of lowpermeability Carboniferous carbonate reservoir in the depth of T oilfield show that, the relationship of effective pressure and porosity, as following: 1) the pore press-lose ratio of Carboniferous carbonate reservoir correlated with their magnitude of porosity. As a whole, the higher porosity, the lower pore presslose ratio, vice versa; 2) the permeability press-lose ratio of Carboniferous carbonate reservoir associated with their poro-permeability condition. The well poro-permeability condition, the lesser damage factor, and vice versa.

Key words :effective pressure ; porosity ; permeability ; carbonate ; Carboniferous ; the North Jiangsu Basin