文章编号:1001-6112(2006)04-0395-04

运用神经网络法研究微裂缝的分布规律

-以苏北盆地高邮凹陷 CA 油田为例

汪嘉月,奥立德,屈 红,颜 虹

(江苏油田 地质科学研究院,江苏 扬州 225009)

摘要:苏北盆地高邮凹陷 CA 油田微裂缝比较发育,但由于微裂缝发育规模、开度和延伸长度均较小而不易识别,研究方法和手段受到很大限制,研究起来难度较大。利用测井的声波曲线、微梯度曲线、微电位曲线、6 m 电阻曲线和冲洗带电阻率曲线,采用神经网络的方法,建立该区裂缝分布的三维模型,从而实现对裂缝参数的预测。通过动态资料分析,证实了运用神经网络法获得的裂缝预测结果是较为可靠的。

关键词:微裂缝;三维分布模型;神经网络;高邮凹陷;苏北盆地 中图分类号:TE122.2 **文献标识码:**A

CA 油田 W2 断块位于高邮凹陷北斜坡西部, 是受汉留断裂活动及区域古地貌双重因素控制的 断鼻、断块构造。储层平均孔隙度为 18.3%,平均 渗透率为 9.5×10⁻³ μ m²,属中孔低渗、特低渗 储层。

1 下第三系阜宁组裂缝静态特征

CA油田下第三系阜宁组裂缝可分为构造裂 缝和成岩裂缝 2 类,但以构造裂缝为主。裂缝的开 度在 5~800 μm之间,主要分布在 100~600 μm。 岩心和薄片观察发现,本区构造裂缝的充填程度基 本一致,且上下差别不大,可作为一个整体进行研 究。其总体特征为边缘平直,具有一定的组系和方 向,依据产状分为水平缝和斜交缝^[1];高角度缝多 发育在长石岩屑石英粗粉一细砂岩中,而低角度的 水平缝和网状缝多发育在油浸一油迹粉砂岩中。

2 神经网络法识别裂缝

人工神经网络(Artificial Neural Network, ANN)针对异或类问题(即 0-1 问题)的分类提 出,它模拟人脑感知事物的过程,通过节点(神经 元)之间的连接权重相互激励,达到使节点认知事 物的目的。人工神经网络算法的整体思想比较简 单,可由已知样本(输入层和输出层)构成搜索空 间,试图建立输入层和输出层之间"梯度路径"关 系。在计算的过程中,根据输出层的网络误差,动 态调整网络参数,以使网络尽快收敛^[2~6]。

2.1 BP 网络结构

BP 网络是目前在测井解释中得到较广泛应用 的无反馈的前向网络类型,通过误差反向传播算法 (Back-Propagation)对网格进行训练。本研究采用 3 层神经网络,即1个输入层、1个隐含层和1个输 出层。网络的输入层节点数是5个,分别为不同的 测井曲线,即 AC(声波曲线)、RLML(微梯度曲 线)、RNML(微电位曲线)、RT(6 m 电阻曲线)和 RXO(冲洗带电阻率曲线);网络的隐含层按公式 $n_h = 2n_i + 1$ 计算(其中, n_i 表示输入层节点数, n_h 表示隐含层节点数),也可直接给定,通常情况下, $n_h > n_i$;网络的输出层1个节点,根据值的大小,分 别表示高角度缝、低角度缝、水平缝和网状缝。传 递函数依然采用常用的 Sigmod 型函数,即:

$$f(x) = \begin{cases} \frac{1}{1 + e^{-(x-\theta)}} & x > \theta\\ 0 & x \le \theta \end{cases}$$
(1)

式中, θ为阀值。

以上参数确定后,还要给出网络的学习率(A) 和冲量系数(B),这是网络权值迭代算法必须的; 此外还有网络的计算精度(E₀)和迭代次数(T₀)。 网络精度采用均方误差计算。

网络的停止规则是:

if $E \leqslant = E_0$ or $T \gg = T_0$ then end

收稿日期:2006-02-28;修订日期:2006-05-16。

作者简介:汪嘉月(1973一),女(汉族),四川成都人,工程师,主要从事油气田开发地质研究工作。

其中, E和 T 是网络实际计算误差和网络当前迭 代次数。

2.2 反向传播神经网络的构建

反向传播神经网络算法见图 1。

按照图 1 所示流程,首先要建立训练样本。所 谓的训练样本,就是包含了测井参数和裂缝类型的 数据库。因此,在建立训练样本之前,还要先进行 岩心标定,然后根据标定的深度提取测井参数,根 据已知资料,确定裂缝类型,建立训练样本。

表1给出了一个标准的训练样本(表中所列只 是训练样本的一部分)。表中的前5列数据为输入 层矩阵,最后1列FracType(裂缝类型)为输出层 矩阵。通过筛选,最终确定AC、RLML、RNML、RT 和RXO这5个参数作为输入层,输出层参数1个 (FracType),与11个隐含层节点共同构成了5-11-1的网络结构。

2.3 输出层参数设定

为了便于构建神经网络,采用以下规则设定输 出层参数:1)裂缝的发育概率按照裂缝总长度与岩 心长度之比计算;2)每一类型的裂缝中,裂缝条数 越多取值越大,取值为0表示没有裂缝,取值为1 表示此段裂缝最发育。

图 1 反向传播神经网络算法流程 Fig. 1 Flow chart showing the calculation of the back-propagation of ANN

2.4 数据归一化

测井响应获取的是地层不同物理性质的物理 参数,这些参数的变化范围很大,所以必须对原始 样本数据进行归一化。可以采用多种数据标准化 方式对原始数据进行归一化,本文采用极差标准化 的方法。

2.5 网络的训练

训练开始时,要求输入隐含层节点数、学习率、 冲量系数、数据标准化方式、最大误差、最大迭代次 数等必要的网络参数。

网络训练结束后,将网络的结构保存好,以备 对未知样本的预测。网络的结构包括隐含层节点 数 n_h、网络学习率 A、网络冲量系数 B、学习权重矩 阵 W₁₂和 W₂₃。表 2 是前述训练样本的计算结果。

2.6 反向传播神经网络识别裂缝

将已经准备好的未知流体类型的样本注入网络的输入层,就可以得到流体类型预测结果。需要注意的是,未知样本的测井参数必须和已经建好的 模型样本完全一致,否则无法预测。表3是对已知 裂缝的回判,数据中既有建模时的数据,也有已知 裂缝类型的未参加建模的测井数据,表中只列出了 一部分。从本表中可以看出,以判断的裂缝类型来 统计,准判率为 73.333%;若去掉建立样本的数 据,则准判率为 63.64%;对所有已知裂缝类型的 预测率为 59.2%(74/125)。

3 裂缝分布规律研究

利用神经网络对裂缝进行识别,计算所有井裂 缝发生的概率,并利用 Kringing 方法按照不同的 层位进行井间预测^[6~8],据此得到了裂缝发育的三 维模型(图 2~4)。

表 1	反向传播神经网络训练样本(部分)
1X I	<u> </u>		J

Table	1	Training	model of	the	hack-propagation	of	ANN(nartly)
lanc		n annn <u>e</u>	mout or	un	back propagation	UI.	

AC	RLML	RNML	RT	RXO	FracType
259.815	5.413	5.124	8.084	11.248	0.538
249.491	8.952	7.244	8.399	12.220	0.850
246.212	9.366	7.406	8.292	12.782	0.513
242.406	9.243	6.938	7.648	13.074	1.000
296.303	2.138	1.933	3.927	5.788	0.550
288.542	2.788	2.620	3.617	4.647	0.675
242.356	7.443	5.758	5.147	7.777	0.613
238.739	7.659	5.875	5.611	8.347	0.417
240.984	6.211	4.803	6.729	9.420	0.525
263.716	3.752	2.829	4.937	6.872	0.800
267.972	3.491	2.678	4.695	6.353	0.292
273.431	3.001	2.552	4.297	5.480	0.788
266.706	4.662	3.878	4.431	6.002	0.588

		Table 2	Having trai	nnea moae	el of AININ				
	样本数	63							
X	输入层节点数	5							
	隐含层节点数	11							
络	输出层节点数	1							
结	学习率	0.8							
构	冲量系数	0.5							
	最大误差	0.05							
	最大迭代次数	150 000							
标准化	①极差标准化								
	1.764 5 -0.214 6	-3.7896 - 4.4	01 2 1.326 3	0.556 8	-13.4390	9.530 7	13.648 8	1.675 2	-13.2927
₩ ₁₂ _ 5×11 矩阵	1.532 7 1.926 0	-8.861 9-15.2	798 -1.3605	4.3867	-1.0067	1.869 2 -	-3.2722	-2.6951	-0.9454
	-17.292 1 3.860 6	-14.2931 - 2.0	88 6 4.924 9	-8.0678	15.772 8	0.883 2	6.644 9	-6.7156	-27.3135
	25.467 5 -1.524 6	13.377 9-12.2	45 3-22.851 0	0.254 8	-6.297 1-	-3.4837-	19.812 1	0.939 6	0.802 3
	1.756 1 -2.787 9	-11.068 4 19.4	41 9 17.834 4	2.999 2	-9.8547-	-6.226 5	4.6227	5.5157	-3.816 0
W ₂₃ 11×1 矩阵	7.328 0 4.851 8	-10.494 9-20.0	28 8 22.903 3	13.933 9	8.718 3-	12.7117—	17.0697	21.983 5	-5.772
迭代次数	T=290 088								
最大误差	E _{max} =0.049 985 10	1							

表 2 神经网络已训练好的模型

 Table 2
 Having trainned model of ANN

表 3 神经网络预测结果(部分)

Table 3 The forecasted result of ANN(partly)

输入层矩阵				输出层矩阵	网络预测结果		
AC	RLML	RNML	RT	RZO	F_1	\mathbf{F}_1^1	误差
259.815	5.413	5.124	0.908	1.051	0.538	0.545	-0.008
249.491	8.952	7.244	0.924	1.087	0.850	0.877	-0.027
246.212	9.366	7.406	0.919	1.107	0.513	0.596	-0.084
242.406	9.243	6.936	0.884	1.116	1.000	0.957	0.043
244.025	8.420	6.232	0.853	1.102	0.513	0.507	0.006
296.303	2.138	1.933	0.594	0.763	0.550	0.514	0.036
296.442	2.233	2.095	0.551	0.652	0.613	0.521	0.092
288.542	2.788	2.620	0.558	0.667	0.675	0.552	0.123
267.520	4.876	4.185	0.602	0.753	0.292	0.624	-0.332
242.356	7.443	5.758	0.712	0.891	0.500	0.473	0.027
238.739	7.659	5.875	0.749	0.922	0.417	0.578	-0.161
237.668	7.400	5.488	0.826	0.971	0.563	0.589	-0.027
239.471	6.488	5.010	0.836	0.977	0.513	0.513	0.000
240.984	6.211	4.803	0.828	0.974	0.525	0.449	0.076
263.716	3.752	2.829	0.693	0.837	0.800	0.768	0.032
271.210	3.224	2.541	0.654	0.773	0.513	0.655	-0.143
273.431	3.001	2.552	0.633	0.739	0.788	0.662	0.126
272.297	3.268	2.863	0.632	0.741	0.513	0.556	-0.044
266.706	4.662	3.878	0.647	0.778	0.588	0.481	0.107
268.204	7.316	5.836	0.761	0.935	0.292	0.343	-0.051
268.886	6.720	5.602	0.763	0.947	0.375	0.372	0.003
269.847	6.003	5.355	0.764	0.960	0.513	0.449	0.063
269.770	5.658	5.175	0.759	0.954	0.513	0.455	0.057
274.926	3.635	4.518	0.722	1.149	0.114	0.119	-0.005
309.250	2.900	2.754	0.506	0.638	0.205	0.121	0.084
273.412	3.514	3.030	0.691	0.658	0.513	0.502	0.011
263.858	4.205	5.227	1.200	1.040	0.613	0.606	0.007
254.689	5.942	5.654	1.094	0.948	0.375	0.382	-0.007
258.695	3.459	5.043	1.284	1.119	0.513	0.516	-0.004
266.505	7.353	5.580	0.755	0.905	0.023	0.129	-0.106

从这些图中可以得出裂缝分布的整体规律:1) 平面上,本区块构造格局与微裂缝的发育有一定的 相关性,构造相对较陡的中东部裂缝较发育,而断块 西部构造平缓处裂缝不发育。2)纵向上,阜一三砂 层组裂缝最为发育,其次是阜二三砂层组;最大裂缝 发生概率分布在区域中部阜一三砂层组。3)所有层 组在构造的中部都有较大的裂缝概率。东部区域 在阜一一、阜一二、阜一三3个相邻的砂层组裂缝

图 4 CA 油田 W2 断块阜一二砂层组裂缝渗透率分布 Fig. 4 The permeability distribution of fractures in the E₂ f₁² Formation in W2 Block, CA oilfield 较发育;西部和北部区域在阜二三沉积时期有较大 的裂缝发育概率;南部区域则在阜一四砂层组发育 较多裂缝。

4 裂缝预测的效果分析

根据裂缝发育区分布的预测结果,结合单井累 积产量和油水界面低值区的分布等资料分析,W2 断块裂缝预测结果的符合率接近75%。在预测的 裂缝发育区,单井累积产量高;油水界面低值区大 部分都位于裂缝不发育区。注水井集中受效的方 向沿有效裂缝的分布方位前进。

参考文献:

她

质

- 1 余建平. 天然裂缝性储层的地质特征[J]. 西北油气勘探, 1999,11(2):47~51
- 2 张盛宗,王为民. 低渗透油藏开发与裂缝孔隙度[J]. 大庆石油 地质与开发,1999,18(2):23~26
- 3 李道品,逻迪强,刘雨芬.低渗透砂岩油田开发[M].北京:石 油工业出版社,1997.1~354
- 4 楼一珊.地应力在油气田开发中的应用[J].石油钻探技术, 1997,25(3):58~59
- 5 马寅生. 地应力在油气地质研究中的应用、意义和研究现 状[J]. 地质力学学报,1997,3(2):41~46
- 6 曾联波,田崇鲁.伸展构造区低渗透储层构造裂缝的分布特征[J].石油实验地质,1997,19(4):344~347
- 7 王端平,张敬轩. 胜利油区埕北 30 潜山储集性裂缝预测方法[J]. 石油实验地质,2000,22(3):250~255
- 8 邢正岩.低渗透砂岩油藏储层非均质地质模型研究[J].石油 实验地质,2003,25(5):505~507,512

STUDY ON THE DISTRIBUTION OF THE MICRO-FRACTURES BY ANN —TAKING THE CA OILFIELD IN GAOYOU SAG IN THE NORTH JIANGSU BASIN AS AN EXAMPLE

Wang Jiayue , Yan Hong , Ao Lide , Qu Hong

(Geological Research Institute, Jiangsu Oilfield, Yangzhou, Jiangsu 225009, China)

Abstract: There are many micro-fractures in the CA Oilfield in Gaoyou Sag, the North Jiangsu Basin. The aperture and extension length of these micro-fractures are too small to identify easily. The methods and means being used to study are limited. Based on the acoustic logging curve, the microinverse, the micronormal, the 6 m electric resistance curve and the resistivity curve in flushing zone, the 3D mathematical model about the distribution of the micro-fractures in this area can be established by using the method of artificial neural network. In this paper, the micro-fracture parameters were predicted by this way. The predict result was verified by the dynamic data analysis. It is reliable to predict the distribution of micro-fractures by using the mathod of artificial neural network.

Key words: micro-fracture; 3D distribution model; artificial neural network; the Gaoyou Sag; the North Jiangsu Basin