文章编号:1001-6112(2006)05-0450-08

青藏高原羌塘盆地油源及运移过程

秦建中

(中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡 214151)

摘要:羌塘盆地隆鄂尼西 J₂b,昂达尔错 J₃s,西长梁 J₃s及安多 114 道班 J₃s,油苗和比洛错 J₂x 富烃页岩及安多 114 道班 J₃s深灰 色灰岩均具有重排甾烷含量相对较高、孕甾烷含量低、三环萜烷和 γ—蜡烷含量较低、Pr/Ph 较高、碳同位素相对较重的特征。隆 鄂尼西 J₂b 及昂达尔错 J₃s 油苗主要来自本区 J₂x 潟湖相富烃源岩;安多 114 道班 J₃s 及西长梁 J₃s 油苗主要来自本区 J₃s 海相盆 地内台凹相深灰色灰岩及富烃页岩。盆地中部含油白云岩及安多 114 道班 J₃s 灰质角砾岩中存在"轻质活油"和"固体沥青"。 "固体沥青"是第一次油气运移聚集成古油藏的产物;发荧光的"轻质活油"则是再次埋深或构造运动所导致的第二次或第三次油 气运移聚集成藏的产物,它们经历过 2 次(或 2 次以上)油气生成和运移的过程。

关键词:油苗;油源对比;运移过程;羌塘盆地

中图分类号:TE122.1 文献标识码:A

在羌塘盆地的地质调查过程中,已发现多处 "油苗"。主要有2种类型,一类是南羌塘坳陷安多 114 道班侏罗系索瓦组(J₃s)灰岩裂缝中的液态油 苗、双湖隆鄂尼西布曲组(J₂b)和昂达尔错北索瓦 组(J₃s)的含油白云岩以及北羌塘坳陷西长梁索瓦 组(J₃s)的含油灰岩或泥质白云岩中的"轻质活油" (图 1);另一类为沥青,主要分布在北羌塘坳陷西 部和中央隆起带东部等地区^[1~3]。

1 盆地中部含油白云岩的油源

羌塘盆地中部含油白云岩主要指隆鄂尼西 J2b

和昂达尔错北岸 J₃ s 含油白云岩以及西长梁含油 灰岩^[1,4,5]。

1.1 生物标志物特征

差塘盆地中部含油白云岩生物标志物特征均 为重排甾烷含量高,规则甾烷中 ααα – C₂₉ 和 ααα – C₂₇含量较高,孕甾烷含量较低,反映原油成 熟度或运移距离的参数 $20S/(20S+20R) - C_{29}$ 和 ββC₂₉/ΣC₂₉值较高,升藿烷含量相对较高,三环萜 烷和 γ-蜡烷含量很低,莫烷含量较低等(图 1)。 重排甾烷含量高,反映油源岩富含粘土;γ-蜡烷 含量低与油源岩沉积环境水体含盐度低有关;升藿

图 1 羌塘盆地油苗样品甾烷组成对比

收稿日期:2005-12-23;修订日期:2006-09-01。

作者简介:秦建中(1957—),男(汉族),河北邯郸人,教授级高级工程师,主要从事石油地质和有机地球化学等领域研究工作。 基金项目:国家重点基础研究发展规划(973 计划)(2005CB422102)。

烷体现了油源岩细菌来源及其氧化还原环境的差别。

具体而言,隆鄂尼西J2b含油白云岩和比洛错 夏里组(J2x)页岩的重排甾烷含量均很高,又有很 好的可比性;西长梁 J₃ s 裂缝含稠油灰岩与 J₃ s 页 岩的重排甾烷含量也很高,且可比性好。其它层位 的烃源岩均不具有重排甾烷优势。昂达尔错北岸 J₃s含油白云岩油中重排甾烷含量优势不明显,其 含量与 J₂ x 钙质泥岩相当,比其它层位烃源岩的重 排甾烷含量高一些。重排甾烷含量的高低除了与 成熟度有关外,与粘土矿物的催化作用也有关。油 苗及其生油岩间这种重排甾烷优势主要是粘土矿 物催化作用的结果,是沉积环境的差异造成的。除 重排甾烷外,羌塘盆地中部含油白云岩和 Jas、Jax 页岩及 J₂ x 钙质泥岩中的升藿烷、γ- 蜡烷及 4-甲基甾烷含量、规则甾烷中 C29 和 C27 及孕甾烷含 量等特征也具有可比性(西长梁 J₃ s 含油灰岩对应 J₃ s页岩;昂达尔错北岸 J₃ s含油白云岩及隆鄂尼 西 J₂b含油白云岩对应 J₂x 页岩、J₂x 钙质页岩), 这与沉积氧化还原性质、水体含盐度及有机质来源 等因素有关。

此外,隆鄂尼西 J₂b油苗与 J₂x 钙质页岩的饱和 烃色谱图均为双主峰形式,也具一定的可比性(图 2)。但是,地表样品经过长期风化、水洗及高等植物

图 2 羌塘盆地油苗及其生油岩饱和烃谱图对比 Fig. 2 Contrast of saturated hydrocarbon spectra of the oil seepage and its source rock in Qiangtang Basin 来源有机质等因素的影响,正构烷烃组分,尤其是较 轻组分,容易散失,使得有些样品谱图失真^[1,6~9]。

1.2 碳同位素

隆鄂尼西 J₂b 含油白云岩中油苗各组分饱和 烃 δ^{13} C 平均为-29.0‰,相对最轻;沥青质 δ^{13} C 平 均为-25.4‰,相对最重;芳烃 δ^{13} C 重于非烃,介 于前二者之间。这与比洛错剖面 J₂ x 页岩干酪根 δ^{13} C 和沥青"A"及其各组分的 δ^{13} C 值和变化规律 最相近;比安多 114 道班、昂达尔错北及西长梁 J₃ s 油苗、烃源岩沥青"A"及各组分 δ^{13} C 值要相对偏 轻一些。可见,隆鄂尼西 J₂b 油苗来自附近的 J₂ x 优质页岩(表 1)。

此外,隆鄂尼西 J₂b 油苗与比洛错 J₂x 页岩沥 青"A"饱和烃单体烃同位素也具有较好的相关性, 二者随碳数的分布曲线几乎重合在一起,变化趋势 相似,它们均没有出现锯齿状分布,C₂₄之前随碳数 增加而碳同位素变轻,C₂₄之后经历了一个由轻到 重、再由重到轻的变化过程,这体现了二者间极好 的可比性。这一变化趋势截然不同于 J₃s 页岩。

1.3 族组成的油源对比

隆鄂尼西的 J₂b 油苗及西长梁 J₃s 油苗与 J₂x 和 J₃s 页岩在芳烃含量上具有一定的可比性,尤其 是饱/芳值更接近 J₂x 页岩,均在 1.5 以上(表 2)。 而饱和烃、非烃和沥青质可比性不好,可能是因为 地表样品受风化、水洗程度不同。

2 南羌塘坳陷东部安多 114 道班 J₃s 油苗的油源

南羌塘坳陷东部安多 114 道班 J₃s油苗主要 是来自本区 J₃s海相深灰色灰岩。

表 1 羌塘盆地部分油苗及岩样 δ¹³C 数据

Table 1 Data of carbon isotope in some oil seepage and rock samples in Qiangtang Basin

내 5	采样地点	岩性	层位	δ^{13} C,‰					
地区				沥青"A"	饱和烃	芳烃	非烃	沥青质	干酪根
南羌塘东部	安多 114 道班	灰岩裂缝中油苗	J ₃ s	-26.0(2)	-26.6(2)	-25.8(2)	-25.2(2)	-24.5(2)	-24.5(10)
北关庙山郊	西长梁	裂缝含稠油灰岩	J ₃ s	-25.3	-26.3	-24.5	-24.9	-24.5	-25.2(2)
北元始中即	西长梁北	页岩	$J_3 s$	-23.4	-24.5	-23.3	-23.5	-23.4	-23
古光塘山刘	昂达尔错北	含油灰质白云岩	$J_3 s$		-26.5				
用尤据中即	隆鄂尼西	含油白云岩	$J_2 b$		-29.0(2)	-26.8(2)	-27.6(2)	-25.4(2)	
北羌塘中部	那底岗日	深灰色泥灰岩	$J_2 b$		-28.3(2)	-27.0(2)			-26.1
南羌塘中部	比洛错	深灰色页岩	$J_2 x$	-26.7(4)	-27.8(2)	-26.3(2)	-26.9(2)	-26.4(2)	-25.3(5)
中央隆起西部	肖茶卡	深灰色页岩/灰岩	$T_3 x$		-29.1(2)	-25.2(2)			-23.7

注:括号内为样品数。

表 2	差 塘 盆 地 氵	由古及剖	(分烃源学	≒沥害"⊿	∖"族组成
1X 4	兀加皿旭	ᄪᇤᇩᆱ	, , , , <u>, , , , , , , , , , , , , , , </u>		1 // 50 //2.

Table 2	Group composition	on of bitumen	"A" in	some oil seep	age and sou	rce rocks in (Qiangtang Basin	%	
地区	采样地点	岩性	层位	饱和烃	芳烃	非烃	沥青质	饱/芳	

南羌塘东部	安多 114 道班	油苗	J ₃ s	40.15	23.94	22.39	7.53	1.68
小光桩山如	西长梁	含稠油灰岩	J ₃ s	37.40(2)	18.20(2)	35.46(2)	6.60(2)	2.06(2)
北无塘中部	东长梁北	页岩	J ₃ s	19.94	21.61	38.23	18.01	0.92
古光庙山如	隆鄂尼西	含油白云岩	$J_3 b$	53.68(2)	20.53(2)	22.37(2)	3.0(2)	2.80(2)
用无塘中部	比洛错	页岩	$J_2 x$	30.86	18.67	35.24	5.52	1.65

注:括号内为样品数。

2.1 油苗与 J₃ s 灰岩碳同位素对比

安多 114 道班 J₃ s 油苗 δ^{13} C 的类型曲线(图 3) 显示出其源岩干酪根 δ^{13} C 平均在 -24.5% 左右 (-23.5%~-25.2%),而安多地区 J₃ s 泥晶灰岩 10 个干酪根 δ^{13} C 平均也为 -24.5% 左右(-22.6%~ -25.9%),与油苗 δ^{13} C 类型曲线具有好的可比性。 比洛错 J₂ x 页岩干酪根 δ^{13} C 为 -24.3%~-24.7%, 可比性较好。此外,安多 114 道班 J₃ s 油苗的芳 烃、非烃和沥青质 δ^{13} C 也与安多地区 J₃ s 泥晶灰岩 对应族组分的 δ^{13} C 值很相近,只有油苗及其饱和 烃的 δ^{13} C 比 J₃ s 泥晶灰岩沥青"A"及其饱和烃的 δ^{13} C 略偏重一些,可能是油苗轻烃部分损失所引 起的。

安多 114 道班油苗单体烃碳同位素值处于 -31.82‰~-26.95‰之间,随碳数增加没有出现 明显的变重或变轻的趋势,这与安多 J₃ s 泥灰岩单 体烃碳同位素值随碳数的分布介于-29.85‰~

图 3 羌塘盆地安多 114 道班地区 油苗稳定碳同位素类型曲线 1.油苗 PA62;2.油苗 PA79;3.灰岩 PA60; 4.灰岩 PA68;5.灰岩 PA74;6.灰岩 PA86

-27.82‰之间具有较好的相关性,基本上呈等间 距分布,随碳数增高变化幅度不大,二者从 C₂₄ 开 始均具有一定的奇偶优势。

2.2 油苗与 J₃ s 灰岩生物标志物对比

安多 114 道班 J₃ s 油苗与 J₃ s 深灰色灰岩甾烷 图谱具有很好的可比性,特别是油苗的甾烷分布几 乎与安多地区 J₃ s 灰岩相重合;其它周围地区的三 叠系及侏罗系泥岩、页岩和泥灰岩等甾烷分布曲线 与油苗相关性很差,只有比洛错 J₂ x 页岩或灰岩与 油苗相关性好一些。

安多 114 道班 J₃s 油苗与 J₃s 灰岩生物标志物 甾烷图谱中都具有丰富的重排甾烷,重排甾烷/(重 排甾烷+规则甾烷)与胆甾烷/(重排甾烷+规则甾 烷)对比(图 4),油苗与 J₃s 灰岩几乎重叠,落入同 一分布区内,而在其它层位则相差较大。从 3 种 ααα-20R 构型规则甾烷分布中也可以看出,油苗 与 J₃s 灰岩的数据很接近,而其它层位的烃源岩则 相差较大。此外,甾烷系列中,油苗与 J₃s 灰岩孕

图 4 羌塘盆地安多 114 道班地区油一岩甾烷参数对比
1.油苗; 2.安多 114 道班灰岩;
3.东线剖面 T,P 泥岩; 4.西线剖面 P,J₂ x 泥岩及灰岩

Fig. 4 Contrast of the sterane parameters between oil and rock in the area of No. 114 Anduo road maintenance squad, Qiangtang Basin 甾烷含量都很低(图 1),也具有可比性。反映原油 成熟度或运移距离的参数 $20S/(20S+20R) - C_{29}$ 和 $\beta\beta C_{29}/\Sigma C_{29}$ 甾烷,比 J₃ s 灰岩相对高一些,表明 原油不但成熟度相对较高,而且经过了一定距离的 二次运移。

安多 114 道班 J₃s油苗和 J₃s灰岩萜烷图谱也 具有很好的可比性,特别是油苗的萜烷分布几乎与 安多地区 J₃s泥晶灰岩相重合,Σ升藿烷/藿烷与 γ-蜡烷/C₃₁升藿烷几乎相等,油苗和 J₃s灰岩几乎 没有三环萜烷。此外,莫烷/藿烷(C₃₀)与 Tm/Ts 也显示出,油苗比本区 J₃s灰岩成熟度相对高一 些,这表明油苗经过一定距离的运移作用。

差塘盆地安多 114 道班 J₃ s 油苗和 J₃ s 泥晶灰 岩 m/z 231 系列三芳甾类烃 C₂₆, C₂₇, C₂₈组成的三 角图(图 5a)中,点群落在一个很小的范围内,表明 彼此间具有明显的亲缘关系。

油苗和 J₃ s 泥晶灰岩均富含 m/z 245 甲基三 芳甾系列。在 C₂₇, C₂₈, C₂₉ 组成的三角图(图 5b) 中,油一岩点群落在一起,彼此间的亲缘关系明显 可见。应当说明的是, J₃ s 深灰、黑灰色灰岩中均检

Fig. 5 Relative composition of the triarylated steranes in J_3 s oil seepage and source rock in the area of No. 114 Anduo road maintenance squad, Qiangtang Basin

测出低碳数三芳甾类烃,(C₂₀+C₂₁)/(C₂₆+C₂₇+ C₂₈)值介于11%~18%之间,这与油苗中均未检 测出低碳数三芳甾类烃差别明显,可能是由于油苗 低碳数轻烃损失造成的。

由于安多 114 道班 J₃s 油苗中 C₂₀以前的正、 异构烷烃损失较严重,使得油苗饱和烃色谱分布曲 线与所有烃源岩具有一定的差别。但是,C₂₄以后 的正、异构烷烃分布曲线与 J₃s 灰岩基本一致,而 且,正构高碳数石蜡烷烃均可达 C₃₃,有的甚至可 达 C₃₆,表明它们演化程度还不算太高,尚未达到 高成熟凝析油湿气阶段。Pr/nC₁₇与 Ph/nC₁₈比值 也与此相一致。

此外,安多114 道班 J₃s油苗与 J₃s泥晶灰岩 沥青"A"族组成中,饱和烃、芳烃和非烃+沥青质 的相对百分含量很相近,芳香烃含量及饱/芳比值 也很接近。

2.3 油苗与 J₃ s 泥晶灰岩单体藻类荧光光谱对比

安多 114 道班侏罗系灰岩裂缝油苗荧光光谱 具有明显的三峰型,与 J₃ s 灰岩单体藻类有机质外 壁荧光光谱也多呈三峰型相一致,即使在有的 J₃ s 泥晶灰岩单体藻类有机质外壁荧光强度明显变暗 时,其荧光光谱也多呈三峰型,具有一定的可比性, 这在其它类型原油或烃源岩中很少见。J₃ s 灰岩单 体藻类仍发荧光,有的荧光强度仍较高,说明烃源 岩有机质成熟度并不太高,这与 R₀为 1.1% 左右 有些差别,也可能是烃类吸附的原因,有待进一步 深入研究。

2.4 油苗与 J₃ s 泥晶灰岩有机质成熟度对比

安多114 道班 J₃ s 油苗与 J₃ s 灰岩及比洛错页 岩的荧光光谱特征、饱和烃色谱特征、甾烷萜烷特征 等成熟度参数都处于成熟阶段;而土门三叠系泥岩 及二叠系泥岩以及那底岗日侏罗系灰岩等都已经接 近或达到过成熟干气阶段,显微镜下所有有机质已 经无荧光,与安多 114 道班 J3 s 油苗不一致,无可比 性。因此,安多 114 道班 Jas 油苗主要来自本区 Jas 海相深灰色、灰黑色灰岩,属海相成因原油,源岩沉 积时水体较动荡,海水含盐度不太高,属弱还原--还 原环境,浮游水生生物发育,而且油苗的成熟度略高 一些或经过一定距离的二次运移。安多 114 道班泥 灰岩曾有过2次油气生成和运移过程,一次是泥灰 岩裂缝中的黑色固体沥青(有时厚度可达 0.5 cm 左 右),其演化程度低,与泥灰岩成熟度接近(样品热解 最高峰温与灰岩一致);第二次是现今油苗,形成时 间晚,运移距离远,且演化程度高。

3 烃类运移

3.1 含油白云岩油气运移

羌塘盆地中部含油白云岩具有 2 次以上的油 气运移过程。含油白云岩中存在"轻质活油"和 "固体沥青","固体沥青"是第一次油气运移聚集成 古油藏并遭破坏后所残留的固体沥青;发荧光的 "轻质活油"则是再次埋深或构造运动所导致的第 二次或第三次油气运移聚集成藏并暴露到地表遭 破坏、风化后残留的液态油苗^[1,10,11]。

从偏光、荧光显微镜下观察,白云岩中普遍存 在着"固体沥青"和发荧光的"轻油"这2种没有任 何关系的"沥青"。"固体沥青"发育在白云石晶间 空隙中,在偏光镜下呈褐色或棕褐色,在荧光镜下 不发光。它的分布有一定界限,即在马鞍状粗晶形 成之前,它已渐渐结束运移,也就是它只浸染马鞍 状白云石粗晶生成之前的细晶、中晶、雾心白云石, 而不浸染马鞍状粗晶白云石,即主要发育在白云石 晶间空隙中。说明其生成时间在成岩晚期的后期 至后生期的早期,早于"轻质活油"的形成时间,为 第一次油气运移聚集成古油藏并遭破坏后所残留 的产物。

发荧光的"轻质活油"广泛分布于成岩各阶段 所形成的孔、缝中。它存在于成岩早期细晶白云石 晶间孔隙中;存在于早期残留的溶蚀孔隙中;存在 于未填满的溶缝中;存在于被构造作用扩大了的 细、中、粗、雾心白云石晶隙中;存在于被方解石充 填过的缝中方解石晶隙中;存在于最晚形成的各种 张开缝中,说明其生成时间较晚(后生期的晚期至 构造期)。例如,昂达尔错北 B-2-5B 细晶白云岩 样品中,所见到"轻质活油"可分为 2 期,第一期为 浅黄色、黄白色或淡蓝白色,第二期为淡蓝绿色,二 者发光互相无关,也为先后运入所致^[1,12,13]。

上述"轻质活油"和"固体沥青"各自成体系, 二者没有任何联系,它们各自分布于不同成因的岩 石孔、缝中,只是"固体沥青"生成时间早于"轻质 活油"。

从野外地质调查和标本观察可以看出,白云岩 及灰岩中确实存在有"固体沥青"和"液态油苗",二 者没有必然的关系。

羌塘盆地烃源层的地球化学数据显示,其中有 2次以上的油气生成和运移过程。烃源层的固体 沥青反射率往往出现2组或3组有规律变化的数 据,这可能与多期油气生成有关;包裹体测温也显 示出2组或3组高低有规律变化的数据,说明烃源 岩曾经历过2期或3期古地温的变化;磷灰石裂变 径迹所退火的时代或温度也主要有2次或3次,它 也说明烃源岩曾经历过2期或3期最高古地温的 变化。

宏观上,羌塘盆地主要烃源层(上三叠统肖茶 卡组 T₃ x、中侏罗统布曲组 J₂ b 和上侏罗统索瓦组 J₃ s)曾经历过 2 次以上构造运动,一次是 J₃ x(上侏 罗统雪山组)沉降后的燕山运动,第二次则可能是 N₂(上新统)沉降后的喜山运动。因此,在羌塘盆 地含油白云岩层中可能在 J₃ x 沉降时期或 J₃ x 沉 降后至大量抬升剥蚀之前已形成早期低成熟的古 油藏。燕山运动使得第一次油气运移聚集形成的 古油藏遭破坏,石油中较轻的组分散失,重组分则 形成固体沥青;在 N₂ 沉降时期或 N₂ 沉降后至大 量抬升剥蚀之前再次形成的轻质油藏再次抬 升剥蚀并暴露到地表,形成目前遭破坏、风化后残 留的液态油苗^[1,10,11]。

3.2 含油白云岩成岩作用、孔隙类型与油气运移 的关系

双湖隆鄂尼西采样 24 块,其中 2 块灰岩,其余 均为白云岩;昂达尔错北采集白云岩样 10 块;西长 梁采集泥质白云岩样 1 块,分别制成偏光薄片和荧 光薄片共 70 片。通过观察,查明该白云岩成因复 杂,于成岩、后生作用过程中经受了强烈的次生改 造,其中的油气曾经历 2 次运移(根据部分样品推 测,也有可能经历过 3 次运移),尤以晚期运移有 效,另一次具破坏性。

在成岩过程中曾经历了白云化、重结晶、压实、 溶解、充填、取代和构造裂隙等多种成岩作用(图 6)。形成顺序为:1)成岩早期白云化作用产生细晶 白云岩(菱形细晶,晶面一般平直,在压实过程中未 变形;白云石细晶,晶间孔隙不发育);2)缝合线的 形成(晶体缝合接触,又经压实溶解使空隙水淡 化);3)重结晶作用(形成雾化白云石等);4)后生期 溶解作用(形成溶孔、溶缝及溶洞等);5)后生期的 充填作用(形成目前所见到的中一细晶白云石或 细一粗晶、中晶白云石),在晶体内充满液态包裹 体,包裹体的测温 50~150 ℃;6)构造期白云石第 二次大规模溶解,形成构造裂隙(溶孔、晶溶洞、溶 洞、溶缝),虽为铁方解石、无铁方解石、石膏、硬石 膏充填,但并未将所有孔隙全填满,以后的构造运 动又生成了张缝。

从储集性能来看,羌塘盆地中部双湖隆鄂尼西 和昂达尔错北的"砂糖状"白云岩与国内外其它一

些砂糖状白云岩不同,其孔隙分布不均匀。前期也 形成一些均匀菱形细晶白云石,孔隙分布也相对均 匀;但后期改造使其面目皆非,并向着非均质性发 展。孔隙类型主要有:成岩早期形成的晶间孔;后 生期和构造期形成的溶孔;成岩晚期及后生期形成 的缝合线;后生期形成的溶蚀缝;构造期形成的构 造缝,可分未充填和充填2种。白云岩的孔隙度变 化可以划分为3个阶段:第一阶段是成岩早期白云 化形成的晶间孔,孔隙度可以达到 20%~30%,这 一阶段形成的晶间孔很快就在成岩晚期的压实作 用下变得很小;第二阶段是后生期白云岩的溶解作 用所形成的溶解缝,孔隙度可以再次达到 20%~ 30%,并伴随着方解石、硬石膏等的充填,使得孔隙 度很快减小,这一阶段伴随着第一次油气运移和成 藏;第三阶段是构造期形成的溶孔、构造张开缝,孔 隙度第三次增大,而构造后期的表生作用使孔隙度 再次减小,第三阶段须伴随第二或第三次油气运移 和成藏才是有效的(图 6)。

第一次油气运移发生在晚侏罗世至早白垩世

雪山组沉积时期的成岩晚期至后生早期。此时,白 云岩中尚存在着一定的白云石晶间空隙,这从"固 体沥青"多发育在白云石晶间孔隙中可得到证实。 白云岩中大规模的溶解作用使先期生成的细晶白 云岩(已近固结)遭到溶蚀、分解、破裂甚至崩塌,产 生了溶孔、溶洞,为第一次油气运移提供了动力和 储集空间。由于白云岩的溶解作用使孔隙度和渗 透率明显增加,孔隙度可以达到 20%~30%,甚至 大于成岩早期白云化时期的孔隙度。油源对比证 实,白云岩中的"油"(包括固体沥青)是来自本层或 相邻层位的优质富烃源岩(页岩、泥灰岩),这些优 质富烃源岩有机质丰度高,母质类型好(Ⅱ1型), 沉积时一般为开阔台地咸化潟湖强还原环境,成岩 晚期至后生早期也正是生成未熟一低熟油的有利 时期。未熟一低熟古油藏遭破坏后很容易形成固 体沥青。就目前来看,第一次油气运移是成岩过程 中(后生作用时期)的破坏性运移,它属于无效运 移。第二次(或第三次)油气运移可能发生在晚第 三纪的后生晚期至构造期,该时期溶缝、溶孔、溶洞

和构造缝是白云岩的主要储集空间,这一点从荧光 的分布可以看出。它可以分布在早期残留的溶蚀 孔隙中、未填满的溶缝中、被构造作用扩大了的细、 中、粗、雾心白云石晶隙中、被方解石充填过的缝中 方解石晶隙中以及最晚形成的各种张开缝中,也可 以分布在成岩早期细晶白云石的孔隙中。显示好 时连成网状发光,在荧光镜下就象节日的礼花,色 彩缤纷,一般中亮,有时甚至达到亮,说明油轻同时 也少,浸染色晕宽一般为 0.1 mm。白云岩的再次 埋深、溶解作用和构造运动为第二次(或三次)油气 运移提供了动力和储集空间。构造期形成的溶孔、 构造张开缝,使孔隙度再次增大。白云岩中的"轻 质活油"是由来自本层或相邻层位的优质富烃源岩 (页岩、泥灰岩)在成熟一高成熟阶段二次生成的, 其油质应该较轻。在第二次油气运移时,有聚集也 有破坏,但以聚集为主,尤其晚期张缝含油好就说 明了这一点。

3.3 安多 114 道班含油灰质角砾岩及其与油气运 移的关系

安多114 道班地区以细粒(泥晶)沉积物为主, 储集空间一般不发育。但该区由于受构造力的影 响,在某些样品中仍可见发育的构造缝、缝合线;同 时发育成岩作用中形成的平行层的缝合线;在泥晶 灰岩中还发育构造力形成的张缝、半张开缝;在干 裂、撕裂角砾岩中砾间淡水方解石胶结物未填满处 尚有孔隙,在镜下和手标本中甚发育,其大小约 1 mm左右,且均含油。从发光强弱可以看出,凡是 储集条件较好的大缝大洞均含轻质油,可以推断, 受构造力较强的大缝大洞发育的地带为勘探有利 地区。此外该区是潮下低能带,紧邻此带的向海一 方多存在有礁、滩等障壁岛屿,其储集层发育,油可 以从下向上运移而来,因此,可望在礁、滩中找到石 油。安多 114 道班 Jas 烃源层及其所夹的灰质角 砾岩中的油气生成和运移过程与双湖附近含油白 云岩中的油相似,也具有固体沥青和轻质液态油 苗,经历过2次油气生成和运移的过程。

4 结论

1)羌塘盆地中部隆鄂尼西 $J_2 b$ 油苗、昂达尔错 及西长梁的 $J_3 s$ 油苗和安多 114 道班 $J_3 s$ 灰岩裂缝中 的油苗具有相似的海相原油特征,其重排甾烷含量 相对较高,孕甾烷含量低,成熟度或运移参数较高, 三环萜烷和 γ -蜡烷含量较低, Pr/Ph 较高, 碳同位 素均相对较重(只有隆鄂尼西 $J_2 b$ 油苗略轻一些)。

2)南羌塘坳陷中部隆鄂尼西 J₂b 油苗与本区

比洛错 J_{2x} 富烃页岩的生物标志物及碳同位素具 有相似性,它来自本区 J_{2x} 潟湖相富烃源岩,而昂 达尔错 J_{3s} 油苗与 J_{3s} 页岩和 J_{2x} 富烃源岩具有一 定的可比性;北羌塘坳陷中西部西长梁 J_{3s} 油苗与 该区同层的富烃页岩有好的亲缘关系;南羌塘坳陷 东部安多 114 道班 J_{3s} 油苗主要来自本区 J_{3s} 海相 盆地内台凹相的深灰色、灰黑色泥晶灰岩。

3) 差塘盆地中部含油白云岩中存在"轻质活 油"和"固体沥青"。"固体沥青"是第一次油气运移 聚集成古油藏(J₃ x 沉降时期或 J₃ x 沉降后至大量 抬升剥蚀之前)并遭破坏后所残留的固体沥青;发 荧光的"轻质活油"则是再次埋深或构造运动所导 致的第二次或第三次油气运移聚集成藏(N₂ 沉降 时期或 N₂ 沉降后至大量抬升剥蚀之前)并暴露到 地表遭破坏、风化后所残留的液态油苗。安多 114 道班 J₃ s 烃源层及其所夹的灰质角砾岩中的油气 生成和运移过程与双湖附近含油白云岩中的油相 似,也具有固体沥青和轻质液态油苗,经历过 2 次 油气生成和运移的过程。

参考文献:

- 1 赵政璋,秦建中,许怀先等. 青藏高原海相烃源岩的油气生 成[M]. 北京:科学出版社,2000.1~648
- 2 罗本家,戴国汉. 羌塘盆地油气有利勘探区块[J]. 石油与天然 气地质,1996,17(1):58~61
- 3 穆 青. 藏北油气远景及勘探方向[J]. 石油实验地质,1992, 14(2):142~151
- 4 秦建中.青藏高原差塘盆地海相烃源层的沉积形成环境[J]. 石油实验地质,2006,28(1):8~14,20
- 5 秦建中.青藏高原羌塘盆地中生界主要烃源层分布特征[J]. 石油实验地质,2006,28(2):134~141,146
- 6 刘宝泉,秦建中,李 欣. 冀北坳陷中—上元古界烃源岩特征及 油苗油源分析[J]. 海相油气地质,2000,5(1-2):35~46
- 7 曾宪章,梁狄刚.中国陆相原油和生油岩中的生物标志物[M]. 兰州:甘肃科学技术出版社,1989.1~310
- 8 Peters K, Moldowan J M. The biomark guide: Interpreting molecular fossils in petroleum and ancient sediments [M]. New Jersey: Pretice Hall, 1993. 1~236
- 9 王铁冠. 生物标志物地球化学研究[M]. 武汉:中国地质大学 出版社,1990.1~154
- 10 秦建中. 羌塘盆地有机质热演化与成烃史研究[J]. 石油实验 地质,2006,28(4):350~358
- 秦建中.青藏高原羌塘盆地有机相展布与成烃模式[J].石油 实验地质,2006,28(3):264~270,275
- 12 Jacob H. Disperse solid bitumens as an indicator for migration and maturity in prospecting for oil and gas[J]. Erdol und Kohle-Erdgas-Petrochemic, 1985, 38(8): 365
- 13 Sun S Q. Dolomite reservoirs: porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, 79(2):186~204

OIL SOURCE AND HYDROCARBON MIGRATION PROCESS IN QIANGTANG BASIN, QINGHAI-TIBET PLATEAU

Qin Jianzhong

(Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214151, China)

Abstract: The oil seepages from the formations of $J_2 b$ in West Longeni, $J_3 s$ in Angdaercuo, $J_3 s$ in West Changliang and $J_3 s$ in the area of No. 114 Anduo road maintenance squad as well as the $J_2 x$ hydrocarbonrich shale in Biluocuo and the $J_3 s$ dark-gray limestone in the area of No. 114 road maintenance squad are characterized by high rearrangement sterane content, low pregnane, triclene and gammacerane contents, high ratio of Pr/Ph as well as heavy carbon-isotope. The oil seepages in the formations of $J_2 b$ in West Longeni and $J_3 s$ in Angdaercuo originate from the $J_2 x$ lagoon-phase hydrocarbon-rich source rock in their corresponding areas. The oil seepages in the formations of $J_3 s$ in the areas of No. 114 Anduo road maintenance squad and West Changliang originate from the $J_3 s$ platform facies dark-gray limestone and hydrocarbon-rich shale. There are "light active oil" and "solid bitumen" in the oil-bearing dolomite in center of the basin and in the $J_3 s$ lime-rubble rock in No. 114 Anduo road maintenance squad area. The solid bitumen is product of the first hydrocarbon migration and accumulation. The fluorescent light active oil is product of the second or third hydrocarbon migration and accumulation causing by reburial or tectogenesis. They have undergone two or more hydrocarbon generation and migration processes.

Key words: oil seepage; correlation between oil and source; migration process; Qiangtang Basin

(continued from page 449)

THE PETROLEUM SYSTEM AND EXPLORATION PROSPECT IN THE EAST OF NORTH YELLOW SEA BASIN

Kim in Sik^{1,2}, Fei Qi¹, Yang Xianghua¹, Cai Feng³

(1. China University of Geosciences, Wuhan, Hubei 430074, China;

2. Kimcheck University of Technology, Pyongyang, DPR of Korea;

3. Qingdao Marine Geology Research Institute, Ministry of Land and Resources, Qingdao, Shangdong 266071, China)

Abstract: The North Yellow Sea Basin (called West Korean Bay Basin in the eastern Korean region) is one of the sedimentary basins distributing along the Qingchuanjiang fault zone where there are thick Meso-Cenozoic sedimentary rocks. There are a series of Meso-Cenozoic sedimentary basins, such as Anzhou Basin, Bohai Bay Basin, Laiyang Basin and South Yellow Sea Basin in the vicinity of the North Yellow Sea Basin. The basins mentioned above belong to Meso-Cenozoic superimposed basinS which display great petroleum prospects. Huge faults, such as Tanlu Fault, Qingchuanjiang Fault and Linjinjiang Fault, have close relationship with petroleum migration and accumulation in the North Yellow Sea Basin. Based on the integrated researches on reservoir, oil generation and trap types, the petroleum prospects of North Yellow Sea Basin is determined.

Key words: oil generation simulation; petroleum system; petroleum prospect; the North Yellow Sea Basin