文章编号:1001 - 6112(2007)02 - 0154 - 08

无机成因二氧化碳气成藏研究

杨晓勇¹,刘德良¹,王佰长²,李振生¹,谈 迎¹,杨 强¹

(1.中国科学技术大学地球和空间科学学院,石油天然气研究中心,合肥 230026;2.大庆石油责任有限公司勘探事业部,黑龙江大庆 163453)

摘要:在总结不同成因条件下 CO₂ 成藏地球化学特征、形成条件、气藏分布以及受控的地质—构造环境的基础上,对松辽盆地不 同类型火山岩 CO₂ 气体脱气进行实验研究,得出了不同岩性的 CO₂ 脱气参数;对韧性和脆性剪切作用的动力变质系统条件下构 造变形岩石 CO₂ 气体释放量进行了模拟计算;对接触变质作用条件下碳酸盐岩石 CO₂ 气体释放量进行了地球化学模拟计算。 在上述研究的基础上,提出了在火山脱气、动力变质和接触变质作用条件下 CO₂ 的形成机制以及气体释放量的计算模型。指出 了我国无机成因 CO₂ 气藏的分布规律和勘探目标。

关键词:无机成因;火山脱气;动力变质作用;接触变质作用;二氧化碳气藏 中图分类号:TE122.3 **文献标识码**:A

STUDY ON FORMATION OF INORGANIC CARBON DIOXIDE GAS RESERVOIRS

Yang Xiaoyong¹, Liu Deliang¹, Wang Baichang², Li Zhensheng¹, Tan Yin¹, Yang Qiang¹

(1. School of Earth and Space Sciences, The Research Center of Petroleum and Natural Gases, University of Science & Technology of China, Hefei, Anhui 230026, China;

2. Exploration Department, Daqing Oil Limited Company, Daqing, Heilongjiang 163453, China)

Abstract : This paper presents the general situation on the geological and geochemical characteristics of CO_2 pools, their forming condition and distributions as well as their controlled geological-tectonic environments. The degassing experiment of volcanic rocks in Songliao Basin presents the CO_2 releasing parameters for different types of volcanic rocks. Geochemical modeling calculation of CO_2 releasing has been done based on dynamic metamorphism caused by ductile-brittle shearing deformation. The amount of CO_2 releasing is calculated and its relative calculation model is proposed during the contact metamorphism in carbonate rocks. Based on research, the model for the calculation of CO_2 degassing and formation of CO_2 pools under the condition of degassing from volcanic rocks, dynamic and contact metamorphism have been established. The distributions of CO_2 pools and their exploration localities in China have also been proposed.

Key words : inorganic genesis ; degassing from volcanic rocks ; dynamic metamorphism ; contact metamorphism ;Carbon dioxide pools

二氧化碳是自然界广泛分布的化合物,目前在 先进国家其用量与日俱增,迄今国际上二氧化碳综 合利用开发的技术项目很多,我国也已出现前景极 好的市场需求和开发前景。

我国无机成因天然气研究,特别是非烃气研究 于 20 世纪 90 年代取得了重大进展,并先后在三水 盆地、苏北盆地、济阳坳陷、松辽盆地等地发现工业 CO2 气流(图 1)^[1~5].涂光炽院士^[6]曾专门撰文论 述无机二氧化碳生成条件及其在地质理论和实践 上的意义,戴金星院士^[1]提出气源断裂的无机天然 气的成藏模式,丰富并发展了无机天然气成因学说 和成藏理论。目前,我国的无机成因天然气理论研

收稿日期:2006-04-11;修订日期:2007-03-12。

作者简介:杨晓勇(1964 —),男(汉族),安徽颖上人,博士,副教授,长期从事资源和能源领域的地球化学研究。

基金项目:国家重点基础研究发展计划(973计划)项目(2003CB214606)和国家自然科学基金(40472074)。

- 图 1 我国东部主要含 CO₂ 盆地地质略图^[1~3] 1.含 CO₂ 盆地;2.CO₂ 气藏或气田; 3.地幔橄榄岩出露点;4.郯庐断裂带
 - Fig. 1 The geological sketch map of main $\rm CO_2\mathchar`-bearing$ basins in east China

究和勘探实践都取得了长足的发展^[7~12]。

1 国内外研究现状

自 20 世纪 80 年代以来,国内外陆续发现了许 多无机成因的二氧化碳气藏,其成因机制受到了广 大石油天然气工作者的高度重视。戴金星等^[1,5]系统 地研究了我国二氧化碳气的成藏作用和分布规律,得 出无机成因二氧化碳气藏的碳同位素值(¹³C)主频率 段在 +7 ‰ - 8 ‰之间;国外对鉴别二氧化碳气的成 因也有较系统的研究,Cornides^[13]在研究中欧哈尔 巴汗盆地地表岩浆成因的 CO₂ 气藏时,得出 CO₂ 气体的 ¹³C 值在 - 6.5 ‰ - 5.2 ‰之间,结合其 中的混合氦同位素的研究,得出该区 CO₂气藏是 幔源成因。勘探实践表明,具有工业价值的二氧化 碳气藏研究的主攻方向是无机成因的二氧化碳 气的成藏机制^[1,2,9~11]。从全球二氧化碳气藏的地 质时空分布来看,高含量 CO₂ 天然气藏的时代主 要集中在中、新生代,分布在火山岩系和断裂系统 非常发育的地壳活动区、地热高异常区、具有碳酸 盐岩分布区及油气富集的沉积区,这是因为强烈的 张性构造环境及火山岩活动区是上地幔脱气的最 有利地区^[4,5,14~17]。戴金星等^[1]和徐永昌^[2]研究指 出,我国高含二氧化碳天然气藏,大多数分布于东 部大陆裂谷断陷盆地内(图1),而西部各盆地很少 见,这与环太平洋构造活动带具有较好的一致性。 无机成因二氧化碳主要包括幔源一岩浆脱气成因 和变质分解成因,前者主要来源于幔源气沿开启后 的深断裂向浅部的直接排放,以及岩浆后期活动中 原生气体的二次排出^[18];后者主要由碳酸盐岩地 层和岩浆岩接触,在变质条件下分解产生,它与岩 浆作用和动力作用密切相关^[8]。

研究表明,幔源玄武岩包裹体中蕴含大量的 CO₂ 成分^[18~24],间接证明了地幔深处形成的玄武 岩可以分异 CO₂ 气;气体的碳同位素研究也证实 CO₂ 气来源于地幔区^[22]。地震、火山喷发是地球 内部气体(流体)排放的最主要方式^[14],它使得地 球内部气体、流体溢出。

对变质作用与无机 CO2 成因问题的大量研究表 明,变质作用过程中总是伴随着一定的流体渗滤作 用,并导致活动性元素诸如 K,Na 和 CO2 等组分的迁 移(亏损和排放);传统的变质作用过程中化学体系的 思路正在被新的研究所打破^[25~32]。Ferry^[33]研究认 为,在碳酸盐岩地层变质作用过程中,流体渗滤作用 造成 K,Na 和 CO2 的迁移,并认为渗滤的流体量与 岩石体积之比为 1~10;而 Ohara^[34]在研究糜棱岩 化作用过程中认为,这个比值可达100~1000量 级。总之,无论变质作用过程中流体渗滤量的大 小、流体对变质作用的控制及其组分迁移的影响是 至关重要的。值得注意的是,Leger 等^[32]和 Ferry^[33] 分别研究美国康涅狄格和缅因州 2 个碳酸盐岩地 层在变质作用过程中流体渗滤和元素迁移机制时, 得出了相关元素的迁移变化量值,并对 CO2 释放 量进行了定量的计算,给出了可信的结果。笔者在 研究郯庐断裂带南段韧性剪切带糜棱岩时,也得出 渗滤的流体量与岩石体积之比为 10~1 000 量 级^[35,36];同时在剪切作用条件下,岩石中可释放出 大量的 CO₂ 气体。

2 研究内容和技术方法

关于 CO₂ 的地质研究,目前有 3 个重点:1) 盆 地中火成和变质成因的无机非烃气的形成作用,也

包括一些断裂成气作用。火成和变质成因的无机 非烃气的形成作用是以深层岩浆作用和变质作用 中的水 --岩交换作用研究为基础:断裂成气作用是 以地幔冷脱气为构想的,即断裂不仅可以导气而且 还可以产气,断裂也是气源产地,并与超高压变质 带有密切关系。2) 断裂容气作用和导气作用。断 裂容气作用是以构造控岩控矿为理论基础的.即张 性断裂储气、剪性断裂输气、压性断裂封气,它们的 构造组合(含派生褶皱)是成藏的具体空间。3)建 放模型[8,36],探讨韧一脆性剪切动力作用条件下流 体交代岩石或水 ---岩反应从而驱使二氧化碳的形 成和释放过程。韧一脆性断裂分布广泛,研究表 用条件下流体交代岩石导致 CO₂ 气体释放的动力 学模型,并对其中的 CO₂ 释放量进行模拟计算是 本文研究的重点:明确 CO2 气藏的控制因素.注重 压力 一应力的主导作用,探讨地质过程中上地幔断 裂导生天然气并在下地壳成藏、上地壳容气的规 律.以及接触变质作用下碳酸盐岩地区岩石成生 CO₂ 的地球化学特征。

2.1 火山岩脱出 CO2 的潜力

各种火成岩都是 CO₂ 重要的母源物质。三水 盆地各期喷出岩中挥发分含量很高,玄武岩平均为 5.34%,最高可达 15.7%;流纹岩平均为 3.8%,最 高为 7.8%;粗面岩平均含量为 3.05%,最高为 8.8%;胜利油田的喷出岩中亦有较高的挥发分,含 量为 3.33%~11.47%,平均为 7.0%。

有人对不同的火成岩样品加热,并对不同组分 的火成岩进行气体组分分析^[7],结果表明:释出气 体的组分主要为 CO₂,喷出岩中 CO₂ 气的含量高于 侵入岩,而基性喷出岩又高于酸性喷出岩。这类母 质产生的 CO₂,其¹³C 值域很宽,一般为 - 10 ‰~ - 3.8 ‰,所含 CO₂ 气中 He 的³ He/⁴ He 比值变化很 大,一般为 $n \times 10^{-7} \sim n \times 10^{-6}$ 。昌德东气藏 CO₂的 ¹³C为 - 4.06 ‰~ - 6.61 ‰, ³ He/⁴ He 值为 3.9 × 10⁻⁶和 4.5 ×10⁻⁶.在火成岩母源的范围之内^[37]。

用微量气体质谱仪测定了松辽盆地不同类型 火山岩在 250 条件下的挥发分组成和含量(表 1),可以作为松辽盆地北部岩石挥发分含量及残余 CO2 量的下限值;测定了样品的总碳含量,反映了岩 石被碳酸盐化后的含碳总量,可以作为 CO2 脱出量 的上限值。火成岩的总碳含量在1.04%~5.87%

样品编号	层位	岩性	总碳含量 , wt %	挥发分含量/ (mL ·g ⁻¹)	CO ₂ / (mL ·g ⁻¹)	CO2, wt %
F9 - 3 ¹⁾	Kd	浅灰色酸性凝灰岩	2.07	0.029 900	0.021 82	0.428 555 525
F9 - 1	Ky	深棕红色酸性火山角砾岩	2.24	0.035 700	0.028 56	0.561 058 204
F9 - 2	$\mathbf{K}y$	浅绿色安山岩	2.76	0.039 130	0.035 68	0.700 803 168
fs9 - 3162 ²⁾	$\mathbf{K}d$	灰绿色中细粒蚀变闪长岩	5.87			
$f s9 - 3610^{2)}$	$\mathbf{K}y$	霏细流纹岩	5.87			
$f s9 - 3632^{2)}$	$\mathbf{K}y$	钠闪碱流岩	4.14			
$f s 9 - 3898^{2)}$	基底	灰绿色碎裂岩	4.49			
S1	J	暗色泥岩	6.56	0.059 124	0.050 49	0.991 698 562
S2	J	灰绿色玄武安山岩	2.35	0.055 396	0.049 26	0.967 536 457
S 3	J	灰绿色英安岩	2.42	0.051 261	0.044 46	0.873 363 289
S4	J	玄武粗安岩	3.11	0.048 387	0.038 84	0.762 994 787
S5	J	灰绿色安山玄武岩	5.52	0.078 986	0.070 61	1.386 989 174
S 6	J	灰黑色玄武安山岩	1.38	0.046 154	0.037 88	0.744 163 599
S 7	J	棕红色凝灰岩	1.21	0.043 299	0.035 68	0.700 937 861
P1	\mathbf{J}_2	紫红色蚀变安山岩	2.07	0.045 833	0.039 55	0.776 881 220
P2	Ks	黑色泥岩	1.38	0.043 548	0.038 86	0.763 357 578
P3	Ks	杂色火山角砾岩	1.04	0.036 364	0.033 07	0.649 611 429
P4	Ks	深灰色砂岩	1.38	0.014 189	0.010 87	0.213 485 194
P5	Ks	深灰色泥岩	1.04	0.055 072	0.048 47	0.952 026 372
P6	$\mathbf{K}y$	深灰绿色凝灰岩	2.07	0.074 150	0.069 28	1.360 779 066
P7	Kd1	暗色泥岩	2.68	0.054 225	0.042 99	0.844 455 379
1) # ㅋ ㅋ ㅗ	-					

表 1 松辽盆地北部深层二氧化碳母源物质脱气参数 Table 1 The degassing of CO₂ from different rocks in northern Songliao Basin

1)样品不计水。
 2)样品为岩屑。

之间。以芳深 9 井为例,作为 CO₂ 主要产层的 3 610,3 632 m营城组的流纹岩以及 3 162 m 登娄库 组的蚀变闪长岩,总碳含量达到4.14%~5.87%,明 显高于其它层位。岩石受热脱气的 CO₂ 脱出量和 总碳含量是成正比的 (图 2)。据此可以推断,昌德 营城组和登娄库组的中酸性火成岩很有可能就是昌 德东 CO₂ 气藏的主力生气层。

2.2 韧 -- 脆性剪切作用与 CO2 释放

CaCO₃)的活化和变异,与剪切带动力作用背景下 的体积变化有特别的联系。剪切条件下岩石受应 变而发生流变和变形,通常会发生体积亏损,体积 亏损量和体积亏损率随应变强度和剪切动力变质 程度加深而加大。剪切作用下某些组分(如 CO₂) 变异与体积亏损关联,是因为剪切带的体积亏损与

Fig. 2 The relationship between the total carbon and degassing CO2 from different rocks in northern Songliao Basin

流体的渗透及流动有关,流体流动并与岩石发生变 质反应,导致岩石内组分含量变动,并产生新矿物 相;体系在达到新的平衡后,体积也相应地发生亏 损^[34]。郯庐断裂带南段双山断裂在剪切动力作用 过程中 ,其内岩石发生了不同程度的亏损 ,边缘部 位体积亏损率约为 10%,而中心带亏损率可高达 50 %[35]。从根本上说,剪切带体积亏损反映了流 体作用与变质反应的强弱,如果剪切动力变质作 用的对象为大理岩这类富含碳质的源岩 .意味着在 剪切动力条件下 CO2 的 释放与体积亏损存在着 对应性,即体积亏损大者,CO2释放相应变多。郯 庐断裂带南段双山断裂的碳酸盐质岩石的流变计 算结果为:在体积亏损率为 50 %的情况下,每百克 源岩的 CO₂释放量为 33.90 g;当体积亏损率为 10%时,其为33.90~26.26g(表2),随源岩类型 和剪切作用的条件不同而变化。计算结果表明两 者之间确实存在对应关系。

与岩石流变之间通过流体这个纽带发生了联系 .即 岩石流变程度越高,CO2释放越多,两者之间有间 接对应关系。岩石在剪切作用下发生流变的方式 主要有 3 点:1) 流体参与变质反应,使新生矿物中 弱相比例增加。如双山断裂内长石、透辉石矿物分 解为云母、高岭石等即如此。层状矿物的增加会提 高岩石的孔隙度,相应也增强流体的作用,使得 CO₂ 的释放增大;2) 通过变质反应,使岩石颗粒度 减小,岩石软化而发生流变,岩石软化易于反应进 一步进行,对 CO2 释放有利;3)由于流体渗透流 动,通过与其相伴的热对流提高环境温度,使剪切 带应变速率加大,驱动岩石软化,热对流提高变质 反应级和岩石流变,加强 CO₂ 的释放。

体积亏损易于 CO2释放,从孔隙度的角度解释

郯庐断裂带南段双山断裂各蚀变反应对 n_{co}, n_{Ho}, X_{co}, X_{Ho}的估算^[36] 表 2

Table 2 The calculated n_{CO_2} , n_{H_2O} , X_{CO_2} , X_{H_2O} of the different arnhic reaction pairs in Shuangshan fault southern part of Tanlu fault helt

剪切带	蚀变反应对	$M_{\rm CO_2}{}^{1)} / {\rm g}$	$M_{\rm F}^{2)}/{ m g}$	<i>n</i> _{CO2} ³⁾	$n_{{\rm H_2O}}{}^{4)}$	$X_{\rm CO_2}^{5)}$	$X_{\rm H_2O}{}^{6)}$
F1	Fss01 Fss02	33.90	48.93	0.770	0.835	0.480	0.520
	Fss01 Fss03	33.90	48.93	0.770	0.835	0.480	0.520
F2	Fss04 Fss05	26.33	38.00	0.598	0.648	0.478	0.522
	Fss04 Fss06	26.60	38.44	0.605	0.658	0.479	0.521
	Fss07 Fss06	22.90	33.04	0.520	0.563	0.483	0.517

注:反应母岩质量 100 g。

1) M_{CO},为蚀变反应释放 CO₂ 质量。

6) XH, 0为 H2O 摩尔分数。

²⁾ MF 为流体质量。

³⁾ n_{CO2}为 CO2 摩尔数。

⁴⁾ X_{CO2}为 CO2 摩尔分数。

⁵⁾ n_{H,0}为 H₂O 摩尔数。

就是剪切带体积亏损过程是一个自组织过程,要求 在体积变化过程中孔隙的产生与崩解率应达到一 个稳态平衡,使其保持一定的孔隙度,而一定的孔 隙度又是流体得以流动并和岩石充分反应生成 CO₂的基础和保证。因此,剪切带内的 CO₂ 生成 释放与岩石体积亏损呈正向变动对应,较大的体积 亏损说明有较大量的渗透流体作用,也即指示能有 更多的 CO₂ 产生。

流体内 CO₂ 含量的估算:假定动力变质反应 过程中,源岩经流体作用发生脱碳反应形成的 CO₂ 气体分子全部停留在流体中,中间没有损失,则双 山断裂动力剪切阶段对断裂带活动流体 CO₂ 的贡 献可以通过流体 X_{CO_2} (摩尔分数)值定量计算出 来;另外,依据上述断裂带蚀变岩中各活动组分迁 移质量的定量计算表明,与 CO₂ 和 H₂O 相比,其 他活动组分的迁移量是很小的,因此认为反应过程 中流体主要由 H₂O 和 CO₂ 两组分构成,即可简化 为 $X_{H_2O} + X_{CO_2} = 1$,并且认为流体总重量为 H₂O 和 CO₂ 重量之和。

Kreulen^[30]曾提出下述的经验公式:在400 和 3~5 MPa 条件下,大理岩带内由于自身反应形 成的流体含 1 摩尔 CO₂ 的体积为:

$$V_{\text{Fluid}} = (44/0.9 + 18/1) = 66.89 \text{ cm}^3$$
 (1)

根据文献[32]报道,在同样条件下,流体密度 $f = 0.95 \text{ g/ cm}^3$,因此包含1摩尔 CO₂的流体质量约 为 63.54 g。依据表 2 中各蚀变反应对 CO₂ 项在反 应前后的 *M* 值,可求得 100 g 母岩为各反应对中释 放的 CO₂ 摩尔数 $n_{CO_2} = (M_{CO_2}/CO_2 分子量)$,根据 n_{CO_2} 值求得相应的 n_{CO_2} 所对应的生成流体质量,进一 步可求出生成流体中 H₂O 的摩尔数 n_{H_2O} :

依据上式,得到流体中 CO_2 的摩尔分数值:

$$X_{\rm CO_2} = n_{\rm CO_2} / (n_{\rm CO_2} + n_{\rm H_2O})$$
 (3)

表 2 是按上述基础估算出 nco₂, n_{H2}o, X_{H2}o和 Xco₂的值,而其中 Xco₂项是衡量双山断裂在剪切动 力变质作用过程中释放 CO₂量大小的一项定量指标。由计算结果可以看出,CO₂ 在断裂带内的流体 中含量是相当高的,其摩尔数量比占到流体总量的 48 %左右。这说明在整个剪切作用过程中,碳酸盐 岩变质反应所导致的成分变化的结果产生了大量的 CO₂,CO₂存留于流体内,随着流体一同渗滤和运 移,在一定条件下就有可能生成 CO₂气藏。

对于韧 — 脆性剪切条件下影响和控制 CO₂ 释 放的 3 大要素的讨论,可以有如下几点认识:1) 剪 切动力条件下,以碳酸盐岩为主的含碳源岩构成动 力变质作用对象有利于 CO₂ 释放,剪切作用的温 度、压力、应变强度条件以及变质等级对 CO₂ 释放 具有决定意义;2)流体存在和岩石内所含流体量大 小,对于 CO₂ 生成和释放影响重大,参与反应的流 体数量越多,生成 CO₂ 的数量也越多;3) CO₂ 释放 与流体作用的强度有关,流体的成分、化学活动性、 扩散与岩石孔隙度、渗透能力等方面都是流体作用 强弱不可忽视的因素;4) CO₂ 释放与剪切带体积 亏损之间存在直接对应性,体积亏损越大,生成 CO₂ 也越多,体积亏损值是 CO₂ 释放的一项信息 指标,具有一定的指示意义。

2.3 接触变质作用条件下 CO2 释放研究

接触变质作用条件下,CO2 形成机理在于一 定的物理化学条件下侵入体和围岩相互作用,这种 作用导致了含碳质岩石分解产生 CO2。它涉及 2 个方面:一是接触变质系统的化学反应及化学变化 过程,即系统生成 CO2 的能力;二是 CO2 释放及输 运的动力耦合过程。接触变质作用条件下 CO2 形 成和释放的控制因素包括侵入体类型、围岩性质、 外部的物理化学条件以及流体输运介质特性等。

2.3.1 CO₂ 释放的围岩条件

岩石渗透率、热传导性、岩石孔隙和连通度等 都直接或间接地控制着 CO₂ 的释放,总结起来可 以得出以下几点:1)碳酸盐岩(或含泥质)不仅具有 释放 CO₂ 的物质基础,同时由于它们对温度变化 都较敏感,导热性好,因而构成接触变质型 CO₂ 的 围岩条件;2)含泥质碳酸盐岩(如泥灰岩等)在渗透 率、孔隙度和连通性方面比纯碳酸盐岩更好,更易于 流体流动和 CO₂ 形成;3)由水力破裂作用导致孔隙 连通,使流体压力快速释放和流体运移,CO₂ 才有可 能进一步集中和减压而呈气态存在。研究表明,水 力破裂的形成时间不超过 200 a,一般为几十年。

2.3.2 CO₂ 释放与侵入体

接触变质作用条件下岩浆侵入的成分、深度、 规模和产状等要素皆对 CO₂ 释放构成不同程度的 影响,其作用主要为:1) 侵入岩浆中挥发分含量影 响接触变质晕发育的宽度,挥发分含量高,则晕带 发育宽,接触变质作用范围愈广,CO₂ 释放程度便 相应加强;2) 岩浆侵位深度与冷却速率关系密切, 中深成侵入体侵位后由于冷却缓慢,热场作用时限 长,围岩中 CO₂ 更易释放,浅成和喷出岩体则由于 冷却快速,对 CO₂ 释放不利;3) 侵入体的规模和热 容量大小对接触变质型 CO₂ 释放有着重要的作 用,热容量大的岩体可以使围岩温度升高并保持足 够长的时间,从而保证含碳质围岩的脱碳,释放 CO₂的反应彻底。围岩最高温度保持时间与侵入 体规模有直接关系,最高温度保持时间(t)与侵入 体直径(D)的平方成正比,其关系式为: $t = K D^2$, 式中 K为比例系数。因此,侵入体规模越大,围岩 高温保持期越长,则围岩脱碳、脱挥发分反应越完 全,CO₂释放越多,即侵入体规模对 CO₂释放具有 间接指示意义。

2.3.3 接触变质作用与 CO2 释放

从侵入体和围岩条件来看,CO2 释放与接触 变质级别具正相关关系:变质级别高,变质程度强, CO2 释放也愈多;接触变质晕形成的宽度越大,则 生成 CO2 的潜能也越大。一般而言,脱碳规模和 程度自接触变质外带向内带逐渐增强,尤以中心带 为最强。

Lasaga 等^[31]研究认为,变质反应的主要决定 因素为矿物反应表面积、温度、偏离平衡程度、孔隙 度和反应级。由此,接触变质系统内脱碳反应强度 可概括为:1)矿物反应表面积愈大,CO₂ 释气反应 愈强烈;2)温度升高,更有利于 CO₂ 释放;3)反应 系统越偏离平衡程度,反应越朝着脱挥发分方向进 行;4)孔隙度和反应级越高,CO₂ 生成量越多。

2.3.4 接触变质作用条件下 CO₂ 释放的圆台型 模型

岩浆上涌侵入过程中,周围围岩发生接触变 质,形成一系列的变质程度不同的变质带。变质过 程中,岩石中碳质分解产生 CO₂ 释放。笔者提出 了接触变质作用的简化地质概念模型(图 3)。

图 3 接触变质作用条件下 CO₂ 释放的简化圆台地质概念模型^[8] Fig. 3 A circular cylinder model for the CO₂

releasing during the contact metamorphism

侵入岩体的形状为圆台型。侵入岩体由下向 上侵位,形状一般为上细下粗,不考虑岩体表面起 伏。花岗质岩浆一般形成于中下地壳,侵入岩的埋 藏深度一般为地下 500~1 000 m,因此侵入岩体的 高度一般为 1 5000 ~ 10 000 m:侵入岩体顶部的直 径一般为1000~3000m。模拟计算中采用了侵入 岩体高度 10 000 m,上表面半径 1 000 m。围岩发生 变质形成一系列的变质程度不同的变质带。模拟 计算中假定变质带中各点变质程度相同并且变质 带的宽度不变,即采用了一个平均的变质程度,变 质仅与接触面积有关。模拟计算中围岩考虑了2 个端元,即富含碳质的碳酸盐岩和缺乏碳质的沉积 岩(或火山碎屑岩)。围岩为缺乏碳质的沉积岩(或 火山碎屑岩)时,接触变质作用中放出二氧化碳的 量平均按原岩量的1%计;而纯碳酸盐岩接触变质 释放二氧化碳的量为原岩的 1/3~1/4,计算中采 用了 20 %;平均的变质带宽度为 50 m(如郯庐断裂 带南段双山地区接触变质带平均宽约 80 m^[8]);岩 石的密度平均取 2.7 g/ cm³。

由此地质概念模型可计算得出接触变质作用过 程中二氧化碳的释放量,结果见表 3。由本模型假 定的侵入体规模,二氧化碳释放量级即达到 10⁷ ~ 10⁹ t,若放大岩体规模,二氧化碳释放量即随之增 大。所以可以得出这样的结论:在接触变质作用 中,不论是含碳量低的火成岩还是含碳量高的碳酸 盐岩都能释放出巨大的二氧化碳气体。

二氧化碳释放圆台计算模型的提出还具有现 实意义,因为在我国大陆,自古生代以来发育广泛 的深层中酸性侵入岩,而且具有十分广泛的碳酸盐 岩沉积。根据此模型,可以预测在地下深处均发生 过普遍的接触变质作用,具有生成二氧化碳气体的 有利条件,这些已经生成或正在生成的巨大的二氧 化碳气体,只要其中一小部分在有利的地质构造环 境下发生运移、聚集,并在有利的盖层条件下储集, 就可以形成巨大的工业二氧化碳气藏。该模型的 提出和建立对寻找二氧化碳气藏的范围,即二氧化 碳气藏不一定只集中在含油气盆地中,还应该扩大 到盆地以外的接触变质带地区。

3 我国无机成因 CO₂ 气藏及研究思路

我国东部的松辽盆地^[9,11]、济阳坳陷的平方王 地区^[16]、苏北的黄桥、广东三水盆地等地已先后发 现了二氧化碳气藏(田)。1977 年 5 月在广东南海 的沙头圩构造上钻遇我国第一口高产二氧化碳气

	Table 3 The calculated CO2 releasing mount by circular cylinder model					
/(9	侵入体的底 面半径(<i>R</i> ₂)/m	侵入体的 体积/ m ³	d1 = 50 m时CO2 释放量/ t		d2 = 5 m时 CO2释放量/t	
			火成岩	碳酸盐岩	火成岩	碳酸盐岩
30	18 320.510	3.04 ×10 ¹⁰	8.22 ×10 ⁸	1.64 ×10 ¹⁰	8.20 ×10 ⁷	1.64 ×10 ⁹
40	12 917.540	2.19 ×10 ¹⁰	5.92 ×10 ⁸	1.18×10^{10}	5.90 ×10 ⁷	1.18 ×10 ⁹
50	9 390.996	1.64×10^{10}	4.43 ×10 ⁸	8.86 ×10 ⁹	4.41 ×10 ⁷	8.82 ×10 ⁸
60	6 773.503	1.23 ×10 ¹⁰	3.32 ×10 ⁸	6.64 ×10 ⁹	3.30 ×10 ⁷	6.60 ×10 ⁸
70	4 639.702	8.94 ×10 ¹⁰	2.41 ×10 ⁸	4.83 ×10 ⁹	2.39 ×10 ⁷	4.79 ×10 ⁸

表 3 圆台模型设计计算的二氧化碳释放量^[8]

注:假设侵入体的顶面半径(R1)为1000 m,高度(h)为10000 m。

井(水深9井),目前我国已在16个省31个地区发现 了 CO₂ 气藏,产出层位共10个系14个统,其中苏北 黄桥气田规模最大,预测地质储量1000×10⁸ m³。

郯庐断裂是我国东部的一条深大断裂带,其多 阶段的演化^[38],使得地幔深部的二氧化碳向浅部 释放。东部含油气盆地的演化与郯庐断裂带的发 育有着密切的联系,从已经发现的具有工业价值的 无机二氧化碳气藏(如松辽徐家围子、济阳坳陷、苏 北黄桥)的分布来看,我国东部郯庐断裂带及其邻 区盆地具有寻找此类气藏的良好前景^[39~44]。因此 开展郯庐断裂带无机二氧化碳气藏成藏条件的研 究,具有重要的理论和现实意义。

按照构造地球化学的思路,在解剖断裂带的地 球化学动力学演化序列基础上,研究断裂有关盆 地—造山带中与不同时代、不同类型构造组合相关 的沉积—岩浆—变质—变形过程中赋存的 CO₂ 气 及其寄主矿物岩石的地球化学特征,并进行气体地 球化学、地幔地球化学、动力及接触变质地球化学 的系统研究,从而建立 CO₂ 气成生转化的物理化 学条件与相应的地质构造环境及运移聚集的成藏 模式,探讨无机成因 CO₂ 气的形成条件和成生机 制,为我国无机成因二氧化碳气田的成藏理论和寻 找此类气田提供依据。随着研究工作的不断深入, 相信会有更多的气田被发现。

致谢:研究得到了戴金星院士的亲切指导,中 国科学院兰州地质研究所开放实验室的老师给予 了大力支持,在此表示感谢!

参考文献:

- 1 戴金星,宋 岩,戴春森等.中国东部无机成因气及其气藏形成 条件[M].北京:科学出版社,1995.1~212
- 2 徐永昌.天然气成因理论与应用[M].北京:科学出版社, 1994.1~414
- 3 王先彬.稀有气体同位素地球化学和宇宙化学[M].北京:科 学出版社,1989.1~451

- 4 戴金星. 五大连池地幔成因天然气[J]. 石油实验地质,1992, 14(2):200~203
- 5 戴金星,戴春森,宋 岩等.中国一些地区温泉中天然气的地球 化学特征及碳、氦同位素组成[J].中国科学(B辑),1994,24 (4):426~433
- 6 涂光炽.关于 CO₂的若干问题 [J].地学前缘,1996,3(3~4): 53~62
- 7 关效如. 我国东部高纯二氧化碳成因[J]. 石油实验地质, 1990,12(3): 248~257
- 8 杨晓勇,刘德良,陈永见等. 接触变质作用条件下无机天然气成 藏模型:以郯庐断裂带南段双山为例 [J]. 石油学报,2003,24 (6):18~23
- 9 杨玉峰,张秋,黄海平等.松辽盆地徐家围子断陷无机成因天然气及其成藏模式 [J].地学前缘,2000,7(4):523~533
- 10 陈永见,刘德良,杨晓勇. 郑庐断裂系统与中国东部幔源岩浆 成因 CO₂ 关系初探[J]. 地质地球化学,1999,27(1):38~48
- 11 郭占谦,王先彬. 松辽盆地无机成因气的成藏特征[J]. 中国
 科学(D辑),1997,27(2):100~106
- 12 罗开平,夏遵义,徐言岗等.二氧化碳:中国东部中、新生代盆地 的重要资源 [J].石油与天然气地质,1998,19(2):165~168
- Cornides I. Magmatic carbon dioxide at the crust's surface in the Carpathian Basin [J]. Geochemical Journal ,1993 ,27 (2): 241 ~ 249
- 14 上官志冠,白春华,孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学(D辑),2000,30(4):407~414
- 15 王先彬,陈践发,徐 胜等. 地震区温泉气体的地球化学特征[J]. 中国科学(B辑),1992,22(8): 849~854
- 16 陈践发,廖永胜,孙明良.济阳坳陷天然气氦同位素特征及二 氧化碳成因与第三纪岩浆活动的关系[J].地球化学,1996,25
 (5):350~356
- 17 赫 英. 胜利油田边缘及外围找寻不同类型深部天然气的可能性 [J]. 地质论评,1999,45(1):32~35
- 18 杜乐天. 地流体与软流层(体)地球化学[M]. 北京:科学出版 社,1996.1~466
- 19 樊祺诚,刘若新,林卓然等.中国东部地幔 CO₂ 流体包裹体的 碳同位素初步研究 [J].地球化学,1996,25(3):264~269
- 20 杨晓勇,刘德良,陶士振.中国东部典型地幔岩包裹体成分研 究及意义[J].石油学报,1999,20(1):19~24
- 21 杨晓勇,郑永飞,刘德良等.中国东部橄榄岩和榴辉岩中 CO₂ 流体包裹体的碳同位素组成 [J].岩石学报,2000,16(4): 473~481

- 22 Yang Xiaoyong ,Zheng Yongfei ,Liu Deliang , et al. Study on chemical compositions of fluid inclusions from peridotite and eclogites in Eastern - Central China: The geodynamic implications [J]. Phys Chem Earth ,2001 , 26(7 - 8) : 705 ~ 718
- 23 Nadeau S. Carbon concentration and isotopic ratios in fluid-inclusion bearing upper mantle xenoliths along the northwestern margin of North America [J]. Chem Geol, 1990,81(2): 271 ~ 297
- Sugisaki R, Mimura K. Mantle hydrocarbons: Abiotic or biotic ? [J]. Geochimica et Cosmochimica Acta, 1994, 58 (11): 2527 ~ 2542
- 25 Anovitz L M, Essene E J. Phase equilibrium in the system CaCO₃ - MgCO₃ - FeCO₃ [J]. Journal of Petrology, 1987, 28: 389 ~ 414
- 26 Dipple G, Ferry J M. Identification of the scales of differential element mobility in fault zone [J]. J Metamorphic Geol, 1990,8(6):645~661
- 27 Ferry J M. Dehydration and decarbonation reactions as a record of fluid infiltration [J]. Reviews in Mineralogy, 1991,26 (3):351 ~ 393
- Ferry J M, Gerdes M L. Chemically reactive fluid flow during metamorphism[J]. Annual Rev Earth Planet Sci, 1998, 26 (2): 255 ~ 287
- 29 Ferry J M. Regional metamorphism of the Waits River Formation, Eastern Vermont : delineation of a new type of giant metamorphic hydrothermal system [J]. Journal of Petrology, 1992,33(1) : 45~94
- 30 Kreulen R. High integrated fluid/ rock ratios during metamorphism at Naxos: evidence from carbon isotopes of calcite in schists and fluid inclusions [J]. Contrib Mineral Petrol, 1988, 98(1): 28 ~ 32
- 31 Lasaga A C, Rye D M. Fluid flow and chemical reaction kinetics in metamorphic systems [J]. Am J Sci , 1993 ,293 (3) : 361 ~ 404
- 32 Leger A, Ferry J M. Fluid infiltration and regional metamorphism of the Waits River Formation, north - east Vermont,

USA [J]. J Metamorphic Geol , 1993 , 11(1) :3 ~ 29

- 33 Ferry J M. Mineral reactions and element migration during metamorphism of calcareous sediments from the Vassalboro Formation, South - central Maine [J]. American Mineralogist, 1983, 68(3):334 ~ 354
- O'hara K. Fluid flow and volume loss during mylonization:
 an origin for phyllonite in an overthust setting, North California [J]. Tectonophysics, 1988, 156(1): 21 ~ 36
- 35 Yang Xiaoyong, Yang Xueming, Liu Deliang, et al. Study on the characteristics of migration in mylonites of the ductile shear zones from the southern part of Tancheng - Lujiang fault belt, Anhui Province [J]. Acta Ceol Sinica, 1998,72(1): 35~48
- 36 杨晓勇,刘德良,张交东等. 郑庐断裂带南段双山韧 脆性剪 切带物质迁移与 CO₂ 释放研究[J]. 地质学报,2002,76(3): 335~346
- 37 谈 迎,刘德良,李振生等. 松辽盆地北部二氧化碳气藏成因
 地球化学研究[J]. 石油实验地质,2006,28(5):480~483
- 38 Xu J W, Zhu G, Tong W X, et al. Formation and evolution of the Tancheng - Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean [J]. Tectonophysics, 1987,134(2):273 ~ 310
- 39 马锦龙,陶明信. 郯庐断裂带中段幔源岩包体中的流体组成特征 [J]. 兰州大学学报(自然科学版),2004,40(1):85~89
- 40 袁彩萍,徐思煌,贾霍甫等.渤海湾盆地东营凹陷孔店组烃源 岩特征研究 [J].石油实验地质,2006,28(2):177~181
- 41 黄泽光,高长林.南华北中生代火山岩与前渊盆地[J].石油 实验地质,2006,28(1):1~7
- 42 苏 惠,曲丽萍,张金川等. 渤海湾盆地东濮凹陷天然气成藏 条件与富集规律 [J]. 石油实验地质,2006,28(2):123~128
- 43 程有义. 济阳坳陷阳信 —花沟 —平南地区 CO₂ 气藏的储层和 盖层[J]. 沉积学报,2001,19(3):405~409
- 44 Yang Xiao yong, Liu Deliang, Dai Jinxing. Extremely high H₂bearing fluid inclusions in eclogite from Dabie Shan orogenic belt, eastern China [J]. Geol Soc India,2002,61(1): 101~102

(上接第 153 页)

- 21 Allen M B, Windley B F, Zhang C. Cenozoic tectonics in the Urumqi-Korla region of the Chinese Tian Shan [J]. Geologische Rundschau, 1994, 83:406~416
- 22 Hendrix M S, Graham S A, Carroll A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tianshan: evidence from Mesozoic strata of the north Tarim, South Junggar, and Turpan basins, northwest China[J]. Geol Soc Am Bull, 1992, 104:53 ~ 79
- 23 谷云飞,马明福,苏世龙.准噶尔盆地白垩系岩相古地理[J]. 石油实验地质,2003,25(4):337~342
- 24 Vincent SJ, Allen MB. Evolution of Minle and Chaoshui Basin, China: implications for Mesozoic strike-slip basin formation in central Asia[J]. GSA Bulletin, 1999,111(5):725 ~ 742
- 25 Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects

on a continental collision[J]. Science ,1975 ,189:419~426

- 26 贾承造,魏国齐,李本亮等.中国中西部两期前陆盆地的形成 及其控气作用[J].石油学报,2003,24(2):13~17
- 27 郭令智,朱文斌,马瑞士等.论构造耦合作用[J].大地构造与 成矿学,2003,27(3):197~205
- 28 Tapponnier P, Monlar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions [J]. J Geophys Res, 1979, 84:3425 ~ 3459
- 29 方世虎,徐怀民,宋 岩等.准噶尔盆地东部吉木萨尔凹陷复 合含油气系统特征及其演化[J].地球学报,2005,26(3): 259~264
- 30 周松柏,刘光祥. 准噶尔盆地东南部油气地质条件研究[J].
 石油实验地质,2006,28(3):231~235