文章编号: 1001- 6112(2007) 02- 0178- 05

渤海湾盆地东濮凹陷原油地球化学特征研究

常振恒^{1,2},陈中红¹,张玉体²,彭 君²,金振华² (1.中国石油大学地球资源与信息学院,山东东营 257061;

2. 中国石油化工股份有限公司 中原油田分公司 勘探开发科学研究院, 河南 濮阳 457001)

摘要: 对东濮凹陷文留地区原油样和油砂样进行了族组分、碳同位素、饱和烃色谱一质谱实验分析, 结果表明, 文留地区沙河街 组原油与含油砂岩抽提物的饱和烃含量在 38.3%~ 79.3%; 原油 碳同位素值分布 于- 27.0%~- 28.0%, 饱和烃碳同 位素值 在- 27.4%~- 28.7%, 族组分之间的碳同位素分馏效应较小; 多数样品 Pr/Ph 小于 0.5, 具有明显的 植烷优势; acaC₂₉ 20*R*/20 (*R*+ *S*), C₂₀的/(ac+ $\beta\beta$)参数显示处于低熟状态; 甾烷系列中 C₂₇含量略占优势, 重排甾烷含量与成熟度相关, 随样品成熟度增 高, 重排甾烷/规则甾烷值增大, 低熟油样品的重排甾烷/规则甾烷值小于 0.3。分布在中央隆起带文西断层与文东断层之间地 区的样品, 其 Y- 蜡烷含量较高, Y- 蜡烷/C₃₀ 藿烷分布于 0.40~ 0.99, Y- 蜡烷/H₃₁ 22*S* 分布于 2.11~ 4.15, 反映了陆相咸水湖 相原油特征。分布于文东断层以东的原油样品 Y- 蜡烷含量低, Y- 蜡烷/C₃₀ 藿烷分布于 0.05~ 0.15, Y- 蜡烷/H₃₁ 22*S* 分布于 0.16~ 0.28, 反映了低盐度的淡水一微咸水相原油特征。

关键词: 生物标志物; 低熟油; 盐湖; 东濮凹陷; 渤海湾盆地 中图分类号: T E122. 1 文献标识码: A

AN INVESTIGATION ON THE GEOCHEMICAL CHARACTERISTICS OF CRUDE OIL FROM WENLIU AREA IN THE DONGPU SAG, BOHAI BAY BASIN

Chang Zhenheng^{1,2}, Chen Zhonghong¹, Zhang Yuti², Peng Jun², Jin Zhenhua²

(1. China University of Petroleum, Dongying, Shandong 257061, China; 2. Institute of Petroleum Exploration and Development, Zhongyuan Oilf ield, SINOPEC, Puyang, Henan 457001, China)

Abstract: The group composition and carbon isotope of oil, chromatogram and mass spectrum of saturation hydrocarbon in the source rocks and crude oil from Wenliu area in Dongpu Sag, Bohai Bay Basin were analyzed. The studying results show that the crude oil in the Shahejie Formation was mainly immature. The content of saturation hydrocarbon in the samples is 38. 3% ~ 79. 3%. The carbon isotope of group composition of crude oil is -27.4% - 28.7% and the fractionation effect of the carbon isotope of group composition is not obvious. There is predominance of phytane to pristane, and the ratio of pristane to phytane is lower than 0.5 in most samples. For the most samples, the values of aaaC2920R/ 20(R+S) and C₂₉ $\beta\beta/(\alpha\alpha + \beta\beta)$ are lower than 0.40, the content of diasteranes is low, and the sterane of C27 is predominance in the series of steranes. The ratio of diasteranes to regsteranes is related to the maturity of samples. High maturity is correspond to high value of the ratio. For the samples distributing between the Wendong fault and Wenxi fault, the content of Gammacerance is high, the ratio of gammacerance to C30hopanes is 0. 40~ 0.99, the ratio of gammacerance to HC3122S is 2.11~ 4. 15 and the geochemical characteristics demonstrated that they formed in the salt lake facies sedimentary environment. For the samples located in the east of Wendong fault, the content of Gammacerance was low, the ratio of gammacerance to C₃₀hopanes is 0.05~0.15, the ratio of gammacerance to HC₃₁22S is 0.16~0.28, and the geochemistry characteristics demonstrated that they formed in the sedimentary environment of low salty.

Key words: biomarker; immature oil; saline lake; Dongpu Sag; Bohai Bay Basin

作者简介:常振恒(1965-),男(汉族),河南邓州人,高级工程师,博士生,主要从事油气勘探研究工作。

基金项目:中国石化科技攻关项目(P04022)。

收稿日期: 2006-05-08; 修订日期: 2007-02-01。

咸水湖相一盐湖相原油的地球化学特征引起 了许多学者的关注,先后在柴达木盆地、东营凹陷 沙四中亚段、渤南洼陷开展了研究^{1~8]}。对于东濮 凹陷的盐岩沉积,研究工作集中在盐岩的成因 上^[9~12],而对盐湖环境下形成的原油地球化学特 征却未见有报道。

文留地区位于东濮凹陷中央隆起带中部,东西 两侧分别为前梨园洼陷和海通集洼陷,面积约600 km²。该区沉积了巨厚的新生代地层,其中下第三 系沙河街组发育多套盐膏岩韵律层和多成因类型 砂体,具备良好的油气成藏条件。

文留地区的原油分布于东营组(Ed)、沙一段 (Es1)、沙二段(Es2)、沙三段(Es3)地层中,其油藏 分布范围在1900~3500m,油气分布特征比较 复杂。笔者在该区选择部分原油样品进行了较为 详细的地球化学特征分析,分析项目包括族组分、 碳同位素、饱和烃色谱及生物标志物等。

1 族组分及组分碳同位素特征

文留地区原油、油砂抽提物族组分含量变化较 大, 饱和烃含量分布于 38.3%~79.3%, 芳香烃与 非烃含量在 17.6%~44.8%之间。原油族组分分 布与深度有关, 表现为浅层油藏饱和烃含量低, 芳 香烃与非烃含量高; 深层油藏饱和烃含量高, 芳香 烃与非烃含量普遍较低。如文 184-6 井 Es2 3 036.25 m油斑粉砂岩抽提物饱和烃含量达 71.4%, 芳香烃+ 非烃为 24.8%, 而文 403 井 Es3⁻¹ 段 2 639.3~2697.9 m 原油饱和烃含量仅为 38.7%, 芳香烃+ 非烃为 44.8%; 其它井也有类似 的规律。

按常规观点,原油的碳同位素取决于有机质生

物源。一般认为来源于陆源高等植物的有机质碳 同位素重, 如煤成油 δ^{13} C 通常变化在 – 26‰~ - 24 ‰之间: 而源于水生生物的有机质碳同位素 轻,如古生代海相和深湖相原油碳同位素轻,大多 小于-30%³。高盐环境造成原油碳同位素值偏 重. 如柴西地区第三系咸水湖相原油 δ¹³C 值主要 集中在- 26 ‰~ - 24 ‰之间, 江汉盆地潜江凹陷咸 湖相原油 δ¹³ C 值在 - 27.2 ‰ - 23.9 ‰之间。文 留地区沙河街组原油、油砂抽提物族组分碳同位素 特征十分类似, 原油 δ^{13} C 值分布于 – 27.0‰~ - 28.0%. 饱和 烃碳 同 位素 在 - 27.4% ~ - 28.7‰, 变化幅度较小, 较柴西地区第三系及江 汉盆地潜江凹陷咸湖相原油δ¹³C值低.显示了咸 水湖相陆源有机质碳同位素分布特征。据研究,咸 水湖相原油族组分间碳同位素分馏相对小,差值常 小于 2‰ 最大分馏常出现在饱和烃与芳烃之 间[13,14]。文留地区原油及油砂抽提物饱和烃、芳 烃、非烃、沥青质的同位素差值小.同位素分馏效应 小,符合上述特征(表1)。

2 饱和烃色谱特征

咸水相烃源岩往往具有偶碳优势,正构烷烃呈 单峰分布,植烷优势明显^[6]。对文留地区 13 个原 油、油砂抽提物饱和烃色谱分析显示,除文 164 井 沙一段 1 881.05 m 油浸砂岩有较强的奇偶碳优势 外,其它样品仅有较弱偶碳优势或奇偶优势消失 (表 2,图 1)。文侧 38-6 井沙一段与沙二段一沙 三³段的原油都具有微弱的偶碳优势,绝大多数样品 Pr/Ph 小于 0.5, Pr 小于 nC17, Ph 大于 nC18,反映了 咸水相强还原环境沉积的有机质特征。文 96-1 井沙二段原油Pr/Ph达到1.84,远远高于其它样

表 1 渤海湾盆地文留地区原油、油砂抽提物族组分同位素

Table 1	Carbon isotope of group	composition of the	e crude oil and oi l	⊢sand extracts in	Wenliu area,	Bohai Bay Basin
---------	-------------------------	--------------------	---------------------------------	-------------------	--------------	-----------------

井号	尼位	井深/ m	岩性 -	δ ¹³ C, ‰							
	戸戸			原油、氯仿" A"	饱和烃	芳烃	非烃	沥青质			
梁 2	$\mathrm{E}d$	2 075. 57	含油砂岩	_	- 27.8	- 26.6	- 26.5	- 27.00			
文 221	$\mathrm{E}d$	1 896.08	油迹粗砂	_	- 27.7	- 26.5	- 26.6	- 26.70			
文 164	$\mathbf{E}s_1^{\mathbf{\overline{F}}}$	1 903. 60	油浸砂岩	- 27.3	- 27.7	- 26.7	- 26.8	- 26.36			
文 184- 6	$E s_2$	3 036. 25	油斑粉砂	- 27.7	- 28.3	- 27.8	- 27.0	- 26.70			
文 403	$E s_3^1$	2 639.3~ 2 697.9	原油	—	- 28.9	- 27.8	- 27.6	- 27.30			
文 10- 25	$\mathrm{E} s_3^3$	2 130. 4~ 2 166. 0	原油	- 27.7	- 28.9	- 27.8	- 27.4	- 27.00			
文 10- 95	E <i>s</i> ³	2 255. 1~ 2 446. 4	原油	- 27.7	- 28.7	- 27.9	- 27. 1	- 26.40			
文 256	$E s_3^2$	3 120.5~ 3 131.8	原油	—	- 28.8	- 27.0	- 26.8	- 26.90			
文 260	$E s_3^2$	3 571.0	油浸砂岩	- 27.1	- 28.2	- 26.2	- 26.7	- 26.30			

表 2 渤海湾盆文留地区沙一一沙三3段原油、油砂饱和烃色谱特征

Table 2 Characteristics of gas chromatography of the crude oil-sand extracts in Wenliu area, Bohai Bay Basin

井号	层位	井深 / m	岩性	CPI	OE P	Pr/ <i>n</i> C ₁₇	$\mathrm{Ph}/n\mathrm{C}_{18}$	Pr/Ph	$\Sigma n C_{21}$ - / $n C_{22}$ +	主峰碳
文 164	$\mathbf{E}s_{1}^{\mathbf{F}}$	1 881.05	油浸砂岩	2.09	1.80	0.43	0.73	0.35	0. 51	C ₂₃
文侧 38- 6	$E s_1$	1 934.00	原油	0.94	0.99	0.63	1.39	0.47	0.81	C ₁₇
文184-6	$E s_2$	3 036. 25	油斑粉砂	1.02	1.02	0.84	1.16	0.27	0.33	C ₂₃
文侧 101	$\mathrm{E}s_2^{\mathbf{F}}$	2 255.1~ 2 446.4	原油	1.01	0.97	0.64	1.45	0.44	1.11	C 16
文99-20	$\mathbf{E}s_2^{\mathbf{F}}$	2 861. 2~ 2 882. 4	原油	0.99	0.98	0.46	0.97	0.47	0.95	C ₁₇
文 96-1	$E s_2$	_	原油	1.11	1.08	0.65	0.41	1.84	3.79	C 15
文 256	$\mathbf{E}s_2^{\mathbf{F}}$	2 900.0~ 2 928.1	原油	0.98	0.91	0.40	0.80	0.51	0. 79	C ₂₀
文10-25	E <i>s</i> ₃ ³	2 130. 4~ 2 166	原油	0.97	0.99	0.56	1.60	0.37	0. 83	C ₁₇
文10-29	E <i>s</i> ³	2 255.1~ 2 446.4	原油	1.00	0.91	0.72	1.63	0.40	0.65	C ₂₀
文 256	$E s_3^2$	3 120. 5~ 3 131. 8	原油	0.99	0.96	0.49	1.16	0.38	0. 69	C ₂₄
文 403	$\mathrm{E} s_3^1$	2 639.3~ 2 697.9	原油	0.88	1.23	1.00	2.40	0.35	0.71	C 18
文 260	$E s_3^2$	3 571.03	油浸砂岩	0.97	1.00	0.99	1.38	0.28	0. 19	C ₂₄
文例 20- 2	$Es_3^{\overline{F}}$	3 594.8~ 3 639.6	原油	1.03	1.05	0.21	0.37	0.64	1.08	C 17

图 1 渤海湾盆地文留地区原油及油砂抽提物饱和烃色谱 Fig.1 Gas chromatographic map of the crude oil and oil-sand extracts in Wenliu area, Bohai Bay Basin

品,表明其来源于氧化开放性的淡水一微咸水环 境。原油和油砂的 $\sum n C_{21^-} / n C_{22^+}$ 一般小于0.8,主 峰碳在 nC_{17} — nC_{24} 变化,说明陆源有机质的输入占 有较大比例。文 96–1井处于文东断层下降盘,接 近前梨园洼陷, 其沙二段原油的 Pr/Ph 为1.84, $\Sigma_n C_{21^-} / n C_{22^+}$ 达 3.79, 水生生物有机质输入优势 明显, *CPI* 及 *OEP* 呈微弱的奇碳优势, 主峰碳为 C_{15} , 与文留地区其他原油、油砂抽提物样品差异明 显, 可能与油气来源不同相关。

3 生物标志化合物特征

3.1 三、四环萜与藿烷(m/z191)特征

咸水相沉积环境中形成的原油萜烷特征具有 能够广泛检测出 ¥- 蜡烷及 C35 升藿烷高等特 征[15]。文留地区 10 个原油、油砂抽提物样品分布 在沙一一沙三³段,其生物标志化合物差异较大 (表 3, 图 2)。根据三、四环萜烷与藿烷的分布特征 大至可以分为三组:第一组为文 164 井沙一⁵、文 侧 38- 6 井沙一段、文侧 101 井沙二段、文 184- 6 井沙二段油砂抽提物与文 256 井沙三² 段、文 403 沙三¹段原油,总体特征为三、四环萜烷含量低,Ts 低于 Tm, C30 重排甾烷含量低, Y- 蜡烷含量高, ¥- 蜡烷/H30为 0.40~ 0.99, ¥- 蜡烷/H3122S 为 2.11~4.15. 这组原油或油砂抽提物主要分布在中 央隆起带文西断层与文东断层之间地区,原油成熟 度有一定差异,为相同或相似的源岩相生成的原油, 与强还原环境的盐湖相沉积有机质相关; 第二组为 文 96-1 井沙三段与文 259 井原油, 井位分布在文 东断层以东,这组原油具有极高含量的三、四环萜 烷,萜烷/藿烷达 0.65,Ts 小于Tm, Y- 蜡烷含量 低, ¥- 蜡烷/ H 30 为 0. 05~ 0. 15, ¥- 蜡烷/ H 31 22S

表 3 渤海湾盆地文留地区原油、油砂抽提物 m/z191 参数特征表

Table 3 Characteristics of parameters of m/ z191 from the crude oil and

oil-sand extracts in Wenliu area, Bohai Bay Basin

·····································					井	号				
坝目	文 164	文侧 38-(5文184-6	文侧 101	文 403	文 10- 95	文 6	文 260	文 259	文 256
	1 903.6	1 934.0	3 036.3	2 255.1~ 2 446.4	2 639.3~ 2 697.9	2 255.1~ 2 446.4	3 200~ 3 500	3 571.0	3 700.1~ 3 731.3	3 120.5~ 3 131.8
地层	$\mathbf{E}s_{1}^{\mathbf{F}}$	Es_1	Es ₂	Es_2	$\mathrm{E} s_3^1$	Es_3^3	Es_3^3	Es_3^2	Es_3^3	$E s_3^2$
岩性	含油砂岩	原油	油斑粉砂	原油	原油	原油	原油	油砂	原油	原油
Т/Н	0.00	0.10	0.16	0.10	0.13	0.13	0.13	0.10	0.47	0.17
T s/ Tm	0.30	0.24	0.29	0.51	0.47	0.26	0.78	0.92	0.67	1.88
$T \ s / \ (\ T \ s + \ T \ m)$	0.62	0.19	0.63	0.34	0.71	0.20	0.44	0.48	0.40	0.65
C ₂₉ T s/ H ₂₉	0.13	0.39	0.38	0.42	0.29	0.09	0.00	0.67	0.52	0.08
C ₂₉ T s/ H ₃₀	0.07	0.14	0.24	0.14	0.12	0.04	0.00	0.25	0.27	0.04
$RegC_{30}/HC_{29}{}^{1)}$	0.05	0.09	0.14	0.08	0.00	0.00	0.21	0.39	0.30	0.00
$\mathrm{RegH}_{30}/\mathrm{H_{30}}$	0.02	0.03	0.09	0.03	0.00	0.00	0.12	0.15	0.15	0.00
M 29/ H 29	0.16	0.22	0.10	0.27	0.27	0.40	0.27	0.19	0.25	0.26
O/H ₃₀	0.02	0.15	0.24	0.17	0.14	0.24	0.20	0.42	0.14	0.18
${\rm M}_{30}/$ H $_{30}$	0.10	0.19	0.17	0.17	0.15	0.17	0.33	0.13	0.24	0.17
Y- 蜡烷/HC30	0.40	0.53	0.98	0.64	0.90	0.70	0.50	0.99	0.05	0.63
¥- 蜡烷/H ₃₁ 22S	3.22	2.65	2.48	3.19	4.15	2.65	1.35	2.36	0.16	2.11
O/Y- 蜡烷	0.06	0.28	0.25	0.27	0.16	0.34	0.40	0.43	2.54	0.28
$C_{31}22S/(22S+22R)$	0.67	0.54	0.65	0.55	1.00	0.58	0.58	0.62	0.35	0.62
$C_{32}22S/(22S+22R)$	0.47	0.51	0.59	0.51	1.00	0.50	0.50	0.52	0.27	0.51

1) Reg 表示规则甾烷。

图 2 渤海湾盆地文留地区原油萜烷参数分布特征

a. T s/Tm; b. C₂₀ T s/H₂₉; c. C₂₀ T s/H₃₀; d. RegC₃₀/ HC₂₉; e. RegH₃₀/H₃₀; f. M₂₉/H₂₉; g. O/H₃₀; h. M₃₀/ H₃₀; i. Y- 蜡烷/HC₃₀; j. O/Y- 蜡烷; k. C₃₁22S/(22S + 22R); l. C₃₂22S/(22S + 22R)

Fig. 2 Distributions of the parameters of terpanes from the crude oil in Wenliu area, Bohai Bay Basin

 量低, T s/T m 为 0.26, Y- 蜡烷含量介于第一组原 油与第二组原油之间。从图 3 看, 文 403 井 Es¹3 原 油生物标志物参数整体分布与其它样品参数分布 特征差别比较大, 表明沙三段原油有混源的可 能性。

3.2 甾烷特征

所研究的 10 个 $E_{s_1} - E_{s_3}^3$ 油砂样品甾烷特征 总体相似(表 4),缺乏 C_{21} 、 C_{22} 孕甾烷与升孕甾烷, 除埋藏较浅的文 164 井沙一段油砂抽提物与文 403 井沙三¹ 段 C_{27} 、 C_{29} 重排甾烷含量低外,其它井 的 C_{27} 、 C_{29} 重排甾烷含量较高,重排甾烷分布明显 受到油藏深度的控制。

文 184- 6、文 260、文 256 等井原油样品的 aaaC2720R/aaaC2920R小于1,表现以陆源有机质 输入为主的特征; 文 6、文 259 井 2 个样品甾烷呈 不对称的"V"型分布或反"L"型分布, aaaC2720R/ aaaC2920R大于1.0,尤其是文 259 井 aaaC2720R 十分发育, aaaC2720R/aaaC2920R的比值达3.78, 表现出十分强的水生生物生源; 文164、文403、文

表 4 渤海湾盆地文留地区原油及油砂抽提物甾烷特征

Table 4 Characteristics of steranes from the crude oil and oil-sand extracts in Wenliu area, Bohai Bay Basin

雨日					井	号				
坝 日	文 164	文側 38- 6	文184-6	文侧 101	文 403	文 260	文 10- 95	文6	文 259	文 256
井深/ m	1 903. 6	1 934.0	3 036.3	2 255.1~ 2 446.4	2 639.3~ 2 697.9	3 571.0	2 255. 1~ 2 446. 4	3 200~ 3 500	3 700.1~ 3 731.3	3 120. 5~ 3 131. 8
地层	$E s_1$	Es_1	Es_2	Es_2	$\mathrm{E} s_3^1$	Es_3^2	$\mathrm{E}s_3^3$	$\mathrm{E}s_3^1$	$\mathbf{E}s_3^1$	$E s_3^2$
样品	油砂	原油	油砂	原油	原油	原油	原油	油砂	原油	原油
${\rm DiaC_{27}/RegC_{27}{}^{1)}}$	0.00	0.07	0.39	0.19	0.04	0.48	0.20	0.34	1.07	0.25
$\mathrm{DiaC_{28}/RegC_{28}}$	0.04	0.08	0.32	0.12	0.03	0.37	0.14	0.08	0.36	0.12
DiaC ₂₉ /DiaC ₂₉	0.00	0.83	1.20	1.55	1.10	1.20	1.40	4.33	3.08	1.27
Dia/Reg	0.02	0.05	0.31	0.11	0.03	0.36	0.13	0.12	0.61	0.15
Dia/(Dia+ Reg)	0.02	0.05	0.23	0.10	0.03	0.26	0.12	0.11	0.38	0.13
$C_{29} 20S/(S+R)$	0.15	0.33	0.38	0.32	0.26	0.56	0.27	0.47	0.57	0.37
$C_{29}\!\beta\beta/\left(\beta\beta+\alpha\alpha\right)$	0.43	0.30	0.35	0.29	0. 22	0.51	0.25	0.38	0.71	0.32
C ₂₇ / C ₂₉	0.97	1.04	0.77	1.04	0.90	0.80	0.91	1.52	3.78	0.62
C ₂₈ / C ₂₉	0.54	0.80	0.53	0.79	0.65	0.70	0.64	0.74	1.56	0.48
C ₂₇ : C ₂₈ : C ₂₉	38: 22: 40	36: 28: 35	34: 23: 43	37: 28: 35	35. 26: 39	32: 28: 40	36: 25: 39	47: 23: 31	60: 25: 16	30: 23: 48

1) Dia 表示重排甾烷, Reg 表示规则甾烷。

图 3 渤海湾盆地文留地区原油及油砂抽提物中重排甾 烷/规则甾烷及 C₂₉20R/20(R+S) 与 C₂₉ββ/(αα+ββ) 关系 Fig. 3 Relation ship between C₂₉ 20R/20(R+S), C₂₉ββ/ (αα+ββ) and the ratio of diasteranes to regsteranes of the crude oil and oil-sand extracts in Wenliu area, Bohai Bay Basin

侧 38-6、文侧 101、文 10-95等井的原油样品的 aaaC₂₇20R/aaaC₂₉20R 接近于 1,表现以陆源、水生 有机质混合输入的特征。C₂₉甾烷 4 个异构体所表 现的原油成熟度不受油藏层位控制,主要受深度控 制,深度越大,油藏原油成熟度越高,如文 184-6井 沙二段 3 036.25 m 油藏比文 10-95井 2 255.1~ 2 446.4 m、文 10-25井 2 130.4~ 2 166 m Es³ 成 熟度高。

甾烷异构化参数 C₂₉ β^β/(αα + ββ)、C₂₉ 20*R*/20
(*R*+ *S*)是判别油气成熟程度的重要参数。史继扬等^[16]综合了大港、胜利、辽河、泌阳、江汉和百色等油田未熟、低成熟油地球化学特征,认为未熟原油C²⁹ 20*R*/20(*R*+ *S*)小于 0.25, C²⁹β^β/(αα+β^β)小于

0.2; 低熟原油 C₂₉ 20*R*/20(*R* + *S*) 值为 0.25~ 0.42, C₂₉ β^B/(αa + β^B) 值为 0.20~ 0.40。从表 4 看, 文留地区 10 个原油及油砂样品中, 仅文 259 与 文 260 两口井沙三段原油样品的成熟度较高, 两井 的 C₂₉ 20*R*/20(*R* + *S*) 值分别为 0.57, 0.56, C₂₉ β^B/ (αa + β^B) 值分别为 0.71, 0.51, 达到成熟状态, 其 它样品基本处于低熟状态。文留地区原油及油砂 的重排甾烷/规则甾烷整体分布与原油成熟度关系 密切, 总体上, 样品成熟度越高, 重排甾烷/规则甾 烷值越大(图 3)。文 259 与文 260 井沙三段 2 个 成熟原油样品的重排甾烷/规则甾烷值分别为0.61 与 0.36, 其它低熟油样品的重排甾烷/规则甾烷值 相对较低, 基本在 0.3 以下。

4 结论

东濮凹陷文留地区原油及油砂抽提物地球化 学特征分析显示,分布在中央隆起带文西断层与文 东断层之间的大多数样品形成于咸水湖相沉积环 境,以高 ¥- 蜡烷含量及明显的植烷优势为特征; 分布于文东断层以东的极少数原油样品 ¥- 蜡烷 含量低,具明显的姥鲛烷优势,反映了低盐度的淡 水一微咸水相原油特征。

从目前有限样品分析结果看,文留地区原油多 数为低熟油,其 ααα C₂₉ 20*R*/20(*R* + *S*)、C₂₉ ββ/ (αα+ ββ) 值均小于 0.4。 不同,以萘、烷基苯及甲基烷基苯系列化合物为主。 由此可见,甲基菲异构体的分布并不完全由热演化 程度的差别所引起,有机质类型的不同也是影响甲 基菲分布的另一重要因素。在沉积环境相近的情 况下,生源也会造成甲基菲异构体分布的不同,因 此在利用甲基菲指数评价有机质成熟度上应考虑 生源的不同。

5 结论

芳烃中菲系列是较常见的化合物,在不同沉积 环境和生源的烃源岩中其甲基菲的分布不尽相同。 渤南洼陷是以低等水生生物为主要生源的湖相沉 积,其4个甲基菲异构体丰度均为9-甲基菲大于 1-甲基菲;较弱还原型沉积环境中的3-甲基菲 和2-甲基菲丰度相对偏低,甲基菲指数也偏低; 而在具较强还原性的环境下,3-甲基菲和2-甲 基菲丰度相对较高,其甲基菲指数偏高。济阳坳陷 各种煤成油中甲基菲的分布不尽相同,半咸水一咸 水的还原环境中富含菌类和藻类低等生物,有利于 9-甲基菲的形成;相反为弱氧化一弱还原环境且 以高等植物或某些藻类为主要生源时,1-甲基菲 较9-甲基菲丰富。因此可以利用甲基菲的分布 来判断烃源岩的沉积环境和有机质的类型。在利 用甲基菲指数判断烃源岩成熟度时应考虑沉积环 境和有机质类型的影响。

参考文献:

- 孟仟祥,吉利明. 松粉热降解芳烃生物标志物特征及其地球化 学意义[J]. 沉积学报,1999,17(增刊):825~830
- 2 罗斌杰,李新宇. 原油中芳烃化合物特征[J]. 地球化学,1993,
 (2):127~134
- 3 刘志礼,张林晔,宋一涛等.颗石藻热模拟产物中芳烃生物标志 物分布[J].科学通报,2000,45(22):2438~2445
- 4 卢 冰. 褐煤蜡树脂中多环芳烃组成的研究[J]. 燃料化学学报, 1999, 27(2): 170~175
- 5 包建平. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学 院学报, 1992, 14(4): 8~13
- 6 张立平,黄第藩. 某些海相烃源岩中多环芳烃的组成特征[J]. 石油勘探与开发,1997,24(2):10~14
- 7 张枝焕,曾艳涛,张学军.渤海湾盆地沾化凹陷渤南洼陷原油地球 化学特征及成藏期分析[J].石油实验地质,2006,28(1):54~58
- 8 徐 濂. 花的质谱鉴定及其有机地球化学意义[J]. 石油与天 然气地质, 1982, 3(4): 351~358
- 9 赵师庆, 王飞宇. 论" 沉积环境-成煤类型-煤质特征" 概略成 因模型[J]. 沉积学报, 1994, 12(1): 32~ 38
- 10 赵海舟. 腐泥煤和腐植煤生物标志物色谱对比[J]. 中国煤田 地质, 2002, 14(2):16~19

(上接第182页)

甾烷系列中 C²⁷ 含量略占优势, 重排甾烷含量 与成熟度相关, 总体上随样品成熟度增高, 重排甾 烷/ 规则甾烷值增大, 低熟油样品的重排甾烷/ 规则 甾烷值小于 0.3。

参考文献:

- 1 Hanson A D, Riffs B D, Zinniker D, et al. Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China[J]. AAPG Bull, 2001, 85(4): 601~619
- 2 妥进才, 邵宏舜, 黄杏珍. 盐湖相生油岩中某些地球化学参数与 沉积环境的关系[J]. 沉积学报, 1994, 12(3):114~119
- 3 朱扬明,苏爱国,梁狄刚等.柴达木盆地西部第三系咸水湖相原 油地球化学特征[J].地质科学,2004,39(4):475~485
- 4 朱扬明,苏爱国,梁狄刚等.柴达木盆地咸湖相生油岩正构烷烃 分布特征及其成因[J].地球化学,2003,32(2):117~123
- 5 段 毅,王智平,张 辉等. 柴达木盆地原油烃类地球化学特 征[J].石油实验地质,2004,26(4):359~364
- 6 朱光有,金 强,戴金星等.东营凹陷沙四中亚段盐湖相烃源岩研究[J].高校地质学报,2004,10(2):257~266
- 7 朱光有, 金 强, 张善文等. 渤南洼陷盐湖一咸水湖相沉积组合

及其油气聚集[J]. 矿物学报, 2004, 24(1): 25~30

- 8 张枝焕,曾艳涛,张学军等.渤海湾盆地沾化凹陷渤南洼陷原油 地球化学特征及成藏期分析[J].石油实验地质,2006,28(1): 56~58
- 9 林又玲,吴贤涛,潘结南等.东濮凹陷老第三系沙河街组盐类沉 积模式新见[J].古地理学报,2000,2(4):66~75
- 10 陈发亮,朱 晖,李绪涛等.东濮凹陷下第三系沙河街组层序 地层划分及盐岩成因探讨[J]. 沉积学报,2000,18(3):386~ 388
- 11 金 强, 黄醒汉. 东濮凹陷早第三纪盐湖成因探讨[J]. 华东 石油学院学报, 1985, (1): 1~13
- 12 郑鸿稳.东濮凹陷下第三系层序地层模式[J].石油学报, 2002,23(4):24~28
- 13 Poppet B N, Laws E A, Bidigare R R, et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation[J]. Geochim et Cosmochim Acta, 1998, 62(1): 69~77
- 14 徐永昌, 沈 平, 刘文汇等. 未熟一低熟油的同位素组成特征 及判识标志[J]. 科学通报, 2001, 46(10): 867~872
- 15 蔡勋育,朱扬明. 川东南官渡构造中侏罗统原油地球化学特征 及油源[J]. 石油实验地质, 2006, 28(4): 380~ 385
- 16 史继扬, 汪本善. 苏北盆地生油岩中甾、萜的地球化学特征和 我国东部低成熟的生油岩与原油[J]. 地球化学, 1985, 14(1):
 80~88