文章编号:1001-6112(2017)S1-0040-04

doi:10.11781/sysydz2017S1040

高温高压下 CO, 在原油和高矿化度地层水中溶解度实验

——以塔河油田某区三叠系油藏为例

丹1,赵瑞明1,崔茂蕾2,张晓宇1,王 Ŧ 娜¹ (1.中国石化 西北油田分公司 勘探开发研究院,乌鲁木齐 830011: 2.中国石油化工股份有限公司石油勘探开发研究院,北京 100083)

摘要:利用自行研制的高温高压 CO,溶解度测定装置,在 110 ℃、50 MPa 条件下测试 CO,在高矿化度地层水、原油以及非饱和油 水共存状态下的溶解度。实验结果表明:地层水溶解二氧化碳气体量为 26.5 m³/m³,复配原油溶 CO, 能力为 134 m³/m³,在油水 体积比为1:1的条件下,注入的CO,在油水中的分配系数为9.23。 关键词:CO,溶解度;高温高压;高矿化度;塔河油田

中图分类号:TE135 文献标识码:A

Solubility of CO₂ in crude oil and high-salinity formation water under high temperature and high pressure:

Taking the Triassic reservoirs in a certain area of Tahe oilfield as an example

Wang Dan¹, Zhao Ruiming¹, Cui Maolei², Zhang Xiaoyu¹, Wang Na¹

(1. Research Institute of Exploration & Production, SINOPEC Northwest Company, Urumai, Xinjiang 830011, China; 2. SINOPEC Petroleum Exploration & Production Research Institute, Beijing 100083, China)

Abstract: The solubility of CO2 in the presence of high-salinity formation water, crude oil and unsaturated oilwater system was tested at 110 °C and 50 MPa by using a self-developed high temperature and high pressure CO₂ solubility measurement device. The experimental results showed that the formation water dissolved carbon dioxide gas amount of 26.5 m^3/m^3 , and that of compound crude oil was about 134 m^3/m^3 . When the oil/water volume ratio was $1 \div 1$, the partition coefficient of injected CO₂ in oil and water was about 9.23.

Key words: CO₂ solubility; high temperature and high pressure; high salinity; Tahe oilfield

塔河某区三叠系中下油组油藏为强底水油藏, 油藏温度为110 ℃,压力50 MPa,地层水矿化度 213.3 g/L,具有底水强度大、油藏温度压力高、地 层水矿化度高的特点。在开展油藏注 CO2 驱油过 程中就需充分考虑底水的影响,掌握 CO2 在原 油—地层水体系中溶解分配情况[1-5]。本文利用 自行研制的高温高压 CO, 溶解度测定装置, 探索 建立高温高压 CO, 在原油和高矿化度地层水中溶 解度实验方法,掌握高温高压条件下 CO₂ 分别在 原油和高矿化度地层水中的溶解度,和高温高压条 件下 CO, 在原油和高矿化度地层水两相中的分配 情况。本文共进行了4个方面的工作,分别为在油 藏温度压力条件下原油复配,110 ℃、50 MPa 条件 下测试 CO2 在高矿化度地层水、原油以及非饱和 油水共存状态下的溶解度实验,为后续注 CO2 提 高采收率工作提供技术支撑。

实验装置及样品 1

实验装置 1.1

该实验装置主要承担流体复配,气液分离计量 和温度压力控制等操作。包括的主要实验设备有 高温高压配样器、高压驱替泵、气液分离(干燥)装 置、气量计、回压阀和电子天平等,各仪器的技术指 标如表1所示。实验流程图如图1所示。

实验装置设计组装完成后,进行气量和液量标 定,通过重复测试,计量误差控制在10%以内,满 足实验要求。

1.2 实验样品

实验所用的 CO2 纯度为 99.99%。 实验所用的水样是从A938井矿场取得的三

收稿日期:2017-07-08:修订日期:2017-10-23。

作者简介:王丹(1984—),女,工程师,从事开发采收率实验工作。E-mail:5_wangdan@sina.com。

	Table 1 Main performance parameters of experiment device								
名称	最高压力/MPa	压力精度/MPa	温度/℃	温控精度℃	液体计量精度	气体精度			
高温高压配样器	70	0.1	150	0.2					
高压驱替泵	70	0.1	室温		0.000 1 mL/min				
气液分离装置	常压		室温						
气量计	常压		室温			10 mL			
液量计	常压		室温		0.1 mL				
回压阀	100	0.1	150						
电子天平	常压		室温		0.01 g				

表 1 实验装置主要性能参数 Sable 1 Main performance parameters of experiment devic

图1 实验装置示意

① 高压驱替泵;②中间容器;③高温高压配样器;④气液分离器;⑤液体计量;⑥回压阀;⑦气体计量计

Fig.1 Schematic diagram of experiment device

表 2 A938H 井三叠系下油组地层水分析

	Table 2	Formatio	on water and	alysis of T	riassic lower	oil format	ion in wel	l A938H	mg/L
采样日期	Cl	HCO ³⁻	Ca ²⁺	Mg^{2+}	SO_{4}^{2-}	Br ⁻	I_	$K^+ + Na^+$	总矿化度
2009-10-21	129 433.3	66.7	11 526.4	865.8	300.0	160.0	8.0	69 247.2	211 607.4
2010-08-22	130 745.3	64.1	11 599.9	1 429.4	300.0	200.0	16.0	68 946.3	213 301.0
2011-06-11	130 898.4	89.1	11 482.6	1 431.4	100.0	240.0	10.0	69 090.2	213 341.7
2011-10-31	130 914.7	125.4	11 614.8	1 367.4	200.0	80.0	6.0	69 131.8	213 377.4
2012-12-16	129 476.9	52.1	10 887.9	2 129.4	250.0	180.0	16.0	67 587.7	210 553.9
2013-07-16	132 846.0	36.4	11 385.2	1 230.2	100.0	60.0	8.0	70 825.9	216 473.5
2014-11-23	129 523.7	90.2	9 198.7	3 299.1	500.0	200.0	10.0	67 476.6	210 253.2
2015-01-10	131 499.7	113.0	12 686.9	1 034.2	200.0	120.0	8.0	68 906.9	214 512.2
2015-07-05	129 357.1	105.0	11 657.3	2 288.6	200.0	160.0	4.0	66 322.1	210 041.5

叠系地层水,使用前过滤机械杂质。实验所用水样的离子分析结果如表2所示。

实验所用原油为复配原油,原油和天然气均取自 A959H 井。原油和天然气分析结果如表 3,4 所示。

2 实验

2.1 地层水溶解度实验

利用设计的实验装置配制实验温度压力下的

含过饱和 CO₂ 的水溶液,温度、压力稳定后,由底 部排出饱和 CO₂ 的地层水,计量注入量、产液量和 产气量。实验过程如图 2 所示。

实验步骤如下:

(1)清洗流程各部件并更换所有堵头和活塞 密封圈,试压试漏。

(2)将一定量的地层水样转入高温高压配样器中,并用高压管线连接各部件。

	Table 3	3 Crude oil	analysis of	Triassic l	lower o	il formatio	n in we	ll A959I	ł	
采样日期	密度/ (g・cm ⁻³)	黏度/ (mm ² ⋅ s ⁻¹)	凝固点/ ℃	闪点/ ℃	燃点∕ ℃	含盐/ (mg・L ⁻¹)	含硫/ %	含蜡/ %	初馏点/ ℃	总馏量/ mL
015-03-28	0.925	180 78	-10	42	70	64.4	1.57	5.83	90.3	29

表 3 A959H 井三叠系下油组原油分析

表 4 A959 井天然气组分分析

Table 4Analysis of natural gas composition in well A959

采样日期	甲烷/ %	乙烷/ %	丙烷/ %	异丁烷/ %	正丁烷/ %	C ₅₊ / %	氮/%	二氧化碳/ %	相对 密度
2015-03-28	88.11	3.82	1.99	0.43	0.79	0.59	3.91	0.36	0.64

图 2 110 ℃和 50 MPa 条件下地层水 CO₂ 溶解度实验示意 Fig.2 Schematic diagram of CO₂ solubility test of formation water at 110 ℃ and 50 MPa

(3)用高压驱替泵将中间容器中的 CO₂ 转入 高温高压配样器中,并将温度升至实验所需的 温度。

(4)搅拌高温高压配样器中的样品,使 CO₂快速溶解在地层水中,驱替泵不断将 CO₂转入配样器中,直至达到实验所需压力并平衡,地层水溶解 CO₂达到饱和。

(5)打开回压阀,用驱替泵将配样器中的饱和 地层水排出,经过气液分离装置,分别计量排出水 的体积与相应气体体积。每排出 10 mL 地层水记 录一个点。

2.2 等比例复配原油和地层水 CO₂ 溶解度实验

利用设计的实验装置进行原油复配,进行第一次气油比测定,复配后原油饱和过量 CO₂,进行第 二次气油比测定,接着注入与剩余液体等体积的地 层水,充分接触,测定此阶段地层水中 CO₂ 溶解 量,进而得到地层水从等体积饱和 CO₂ 复配原油 中获取 CO₂ 的量。需要说明的是等体积是脱气原 油体积与加入地层水体积相同。

3 实验结果与分析

依托自行设计的实验装置,进行 110 ℃、50 MPa 压力条件下的地层水和原油 CO₂ 溶解度实验。为保证数据准确,每组实验均进行 2~3 次的重复性测量。

3.1 地层水溶解度

实验过程中,初期不稳定阶段,累计产液 30 mL 后气液比比较稳定,此阶段累计产液 109 mL,累计 产气 2 889 mL,平均汽液比 26.5 m³/m³。累计产液 量—气液比分布曲线见图 3。

3.2 等比例复配原油和地层水 CO₂ 溶解度实验

实验过程包含原油复配及检测、二氧化碳溶解 及检测和地层水—饱和 CO₂ 复配原油体系 CO₂ 溶 解分配及此时地层水 CO₂ 溶解度检测 3 个部分。 在 110 ℃、50 MPa 条件下配制原油样品,搅拌至 稳定后测得的溶解气油比在 120~130 m³/m³ 之间,平 均为 125 m³/m³。复配原油气油比曲线见图 4。 3.2.2 测定 CO, 在复配油中的溶解度

混合液体经过搅拌至稳定后进行汽油比测定, 气油比(CO_2 +天然气)稳定在 259 m³/m³ 左右。饱 和 CO_2 的复配原油气油比关系曲线见图 5。因此 CO_2 在复配原油中的溶解量为 134 m³/m³。

3.2.3 测定 CO₂ 在复配油-地层水体系中的溶解度

按照油水比为1:1,将地层水注入到饱和 CO₂的复配原油中,搅拌至稳定后测得 CO₂在水中的溶解

crude oil with saturated CO_2

度介于 10~20 m³/m³ 之间,平均在 13.1 m³/m³。溶 解度曲线见图 6。需要说明的是此处原油为脱气 原油。

4 结论

(1)通过自行研制的高温高压二氧化碳测定 装置可以较好地完成 CO₂ 在地层水溶解度实验和 CO₂ 在油水复配体系中的溶解度实验。

(2)110 ℃、50 MPa 压力条件下的地层水溶解 二氧化碳气体量折算成室温条件为 26.5 m³/m³。

(3)110 ℃、50 MPa 压力条件下,复配原油溶 CO₂能力为 134 m³/m³(脱气原油:二氧化碳),随 着地层水的注入,饱和 CO₂的原油中有 9.8%体积 的 CO₂将从油相进入水相。换言之,在油水体积 比为 1:1 的条件下,注入的 CO₂在油水中的分配 系数为 9.23。

参考文献:

- [1] 侯大力,罗平亚,王长权,等.高温高压下 CO₂ 在水中溶解度
 实验及理论模型[J].吉林大学学报(地球科学版),2015,45
 (2):564-572.
- [2] 汤勇,杜志敏,孙雷,等.CO₂在地层水中溶解对驱油过程的 影响[J].石油学报,2011,32(2):311-314.
- [3] 李振泉.油藏条件下溶解 CO₂ 的稀油相特性实验研究[J].石 油大学学报(自然科学版),2004,28(3):43-48.
- [4] 李兆敏,陶磊,张凯,等.CO₂ 在超稠油中的溶解特性实验[J].
 石油大学学报(自然科学版),2008,32(5):92-96.
- [5] 胡丽莎,常春,于青春.鄂尔多斯盆地山西组地下咸水 CO₂ 溶 解能力[J].地球科学(中国地质大学学报),2012,37(2): 301-306.

(编辑 叶德燎)