文章编号:1001-6112(2018)02-0260-08

doi:10.11781/sysydz201802260

基于米兰科维奇天文旋回恢复地层剥蚀厚度

——以松辽盆地 X 油田青山口组为例

赵 军^{1,2,3},曹 强³,付宪弟²,张飞飞¹,秦国英¹,闫文雯¹

(1.中国石油 大庆油田有限责任公司 第十采油厂,黑龙江 大庆 166405;2.中国石油 大庆油田有限责任公司 勘探开发研究院,黑龙江 大庆 163618; 3.中国地质大学(武汉)资源学院,武汉 430074)

摘要:基于米兰科维奇天文旋回理论分析松辽盆地 X 油田青山口组剥蚀厚度,频谱分析和小波变换揭示出青山口组存在米兰科 维奇天文旋回,可检测出 100 ka 偏心率、40 ka 斜率和 20 ka 岁差 3 个周期。研究区的 42 口探井滤波结果显示,100 ka 偏心率周 期数量在 35~43 之间,说明地层存在剥蚀现象。研究表明,X 油田青山口组剥蚀量在 0~98 m 之间,自东北向西南,其剥蚀厚度 逐渐减薄,在西南出现大面积分布的未剥蚀区;青山口组在沉积过程中或沉积末期,X 油田局部区域出现构造抬升并遭受剥蚀。 关键词:频谱分析;小波变换;米兰科维奇旋回;剥蚀厚度;青山口组;松辽盆地 中图分类号;TE121.34 文献标识码;A

Recovery of denuded strata thickness based on Milankovitch Astronomical Cycles:

A case study of Qingshankou Formation in X Oilfield, Songliao Basin

ZHAO Jun^{1,2,3}, CAO Qiang³, FU Xiandi², ZHANG Feifei¹, QIN Guoying¹, YAN Wenwen¹

(1. No.10 Oil Production Plant, PetroChina Daging Oilfield, Daging, Heilongjiang 166405, China;

2. Exploration and Development Research Institute, PetroChina Daqing Oilfield, Daqing, Heilongjiang 163618, China;

3. Faculty of Earth Resources, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China)

Abstract: The Milankovitch Astronomical Cycles were applied to study the erosion thickness of Qingshankou Formation ($K_2 qn$) in the X Oilfield, Songliao Basin. Spectral analysis and wavelet transform revealed that the Milankovitch Cycles occurred in the K_2qn . We detected the eccentricity period of 100 ka, obliquity period of 40 ka and precession period of 20 ka in the K_2qn . The bandpass filtering of 42 exploratory wells in the X Oilfield showed that, the K_2qn has 35 to 43 eccentricity periods of 100 ka, which proved erosion phenomenon. The erosion thickness of K_2qn is 0–98 m, and gradually decreases from northeast to southwest, where non-denuded areas distribute widely. Tectonic uplift and erosion took place regionally in the X Oilfield during or at the end of the sedimentation of K_2qn .

Key words: spectral analysis; wavelet transform; Milankovitch Cycles; erosion thickness; Qingshankou Formation; Songliao Basin

地层剥蚀与区域性的构造运动有关,其分布受 到盆地局部差异翘倾的控制,对油气生成、运移和 聚集等产生重要的影响。同时,地层剥蚀厚度是恢 复原型盆地、重建盆地沉积—构造演化史及模拟成 藏过程研究的重要参数^[1-2]。

目前,恢复地层剥蚀厚度的方法主要有镜质体 反射率法^[3]、磷灰石裂变径迹法^[4-5]、流体包裹体 法^[6]、地质分析对比法^[6]、泥岩声波时差法^[7]和宇 宙成因核素法^[8]等。上述方法各有其适用范围和 特点,除地质分析对比法和泥岩声波时差法外,其 他方法成本较高,而地质分析对比法需要研究人员 具有较强的地质认识能力,泥岩声波时差法受到模 型和压实规律等严格限制。近年来,有学者提出基 于米兰科维奇旋回理论^[9],运用旋回地层分析方

收稿日期:2017-08-14;修订日期:2018-01-29。

作者简介:赵军(1988—),男,硕士,助理工程师,从事油气田开发和油藏工程研究。E-mail:1255210168@qq.com。 通信作者:曹强(1983—),男,博士,讲师,从事油气成藏机理及油气地球化学研究。E-mail:qcao@cug.edu.cn。 基金项目:国家科技重大专项课题(2011ZX05010-001)资助。

法恢复地层剥蚀厚度,但该方法在地层剥蚀厚度研 究方面还没有得到很好的应用。本文选取遍布松 辽盆地 X 油田全区的 42 口探井,基于测井曲线提 取米兰科维奇旋回信息,计算地层剥蚀厚度。

1 研究概况

地球绕太阳公转的椭圆轨道形状、黄赤交角 (地球自转轨道面与地球公转轨道面的夹角)和地 球自转轴的周期性变化,分别用偏心率(e)、斜率 (o)和岁差(p)来描述。天文轨道参数(偏心率、斜 率和岁差)周期性变化驱动地球表层气候周期性 波动,对气候变化敏感的沉积物呈旋回性保留在沉 积地层中^[10],称为米兰科维奇旋回(简称米氏旋 回)。通过频谱分析、小波变换等技术手段,可以 识别出地层中的米氏旋回信息。LASKAR等^[11]认 为米氏旋回用于定量计算可以追溯到距今 250 Ma,研究层段松辽盆地 X 油田青山口组符合时限 条件。旋回地层的研究常用替代指标提取天文周 期,其中自然伽马(GR)、自然电位(SP)测井曲线 最为常用^[12],对砂泥岩反应敏感,本次研究使用 GR 或 SP 测井曲线提取青山口组地层中的米氏旋 回信息。基于米氏旋回理论,运用频谱分析、小波 变换和滤波技术,探索性地恢复研究区 42 口探井 (直井且未钻遇断层)的青山口组(K₂qn)剥蚀厚 度,绘制 X 油田的地层剥蚀厚度平面分布图,总结 全区及 4 个三级构造带的地层剥蚀厚度分布特征, 对青山口组沉积末期区域构造运动差异性的深入 认识具有一定意义。

X 油田位于松辽盆地中央坳陷区东部朝阳沟 阶地,呈 NE-SW 向展布(图1)。东西向的剖面显 示,朝阳沟阶地西北陡、东南缓。X 油田划分为H 背 斜、M 鼻状构造、J 背斜和 N 鼻状构造等4个三级 构造带^[13]。青山口组地层沉积于晚白垩世初期, 距今88.8~94 Ma,处于裂后热沉降坳陷发育阶段。 由下至上,青山口组划分为青一段、青二段和青三 段。青一段泥岩发育,见油页岩;青二、三段上部主 要为紫红、灰绿色泥岩,浅灰色粉砂岩及泥质 粉砂岩沉积。总体上,青一段至青三段沉积末期,

图 1 松辽盆地 X 油田青山口组顶面埋深及构造区划 据徐启^[13]等修改。

Fig.1 Top buried depth and tectonic zone of Qingshankou Formation in X Oilfield, Songliao Basin

图 2 松辽盆地白垩系地层综合柱状图 据张顺等^[14]、任延广等^[14]和吴怀春等^[15]修改。

Fig.2 Cretaceous strata histogram of Songliao Basin

盆地经历了缓慢的构造抬升,湖泊面积逐渐减小, 相对湖平面逐渐降低,气候由潮湿逐渐变得干燥, 沉积层序呈现反旋回特征(图2)。在青一段沉积 时期,全区处于半深湖---深湖沉积环境:青三段沉 积时期,研究区南部处于半深湖-深湖,而北部逐 渐演变为滨浅湖沉积环境。青山口组沉积末期,由 于构造隆升作用,盆地边缘大部分区域处于剥蚀状 态.与上覆姚家组呈平行不整合接触,局部出现角 度不整合接触。青山口组在哈尔滨—绥化地区遭 受强烈剥蚀[16],呼兰隆起带和长春岭背斜遭受局 部剥蚀[17]:而处于凹隆过渡带的朝阳沟阶地,青山 口组是否遭受剥蚀、剥蚀量多少的相关研究较少。 过 TX51 井南北向的地震剖面显示,6 号断层两侧 地震同向轴数目不等(图1)。本文通过提取地层 的天文旋回信息,揭示研究区的构造运动特征,为 盆地的沉积—构造历史演化和油气成藏过程提供 参考。

2 旋回地层分析

2.1 数据与方法

选取 X 油田钻穿青山口组且未钻遇断层的 42 口 直探井(表1)。优先使用 GR 曲线,如无 GR 曲线, 则用 SP 曲线代替。基于米氏旋回理论,利用 Redfit3.8软件^[18]对 GR 或 SP 曲线进行频谱分析, 同时使用 TORRENCE 等^[19]提供的小波工具包进 行小波变换,综合识别米氏旋回。通过对米氏旋回 周期进行高斯带通滤波,以提取地层中记录的米氏 周期个数。由于米氏旋回受到构造运动、沉积环境 等因素的影响,旋回厚度呈现波动变化,因此,频谱 分析结果显示的旋回厚度是平均值。小波变换对 准周期时变信号的检测效果非常好,能够检测出偏 心率、斜率和岁差在沉积过程中的能量变化。

2.2 处理结果与分析

LASKAR 等^[11]计算了新生代和中生代天文周 期。在地史中,偏心率周期基本保持在 100 ka 左 右,而斜率周期与岁差周期逐渐增大,但三者比值接 近5:2:1。据此,如果在地层中识别出旋回厚度比 值与天文周期 3 个参数比值相近的 3 种旋回,则认 为 X 油田青山口组沉积时期受到天文周期的影响。

以TX37 井和TX50 井为例。TX37 井地震剖 面反射轴横向连续性较好,振幅能量较强,为稳定 沉积环境。在TX37 井青山口组频谱分析(图3) 结果中,找到11.5,4.5,2.3 m 3 个天文旋回厚度的 比值为5:1.957:1,比值接近5:2:1,分别对应 偏心率100 ka、斜率40 ka和岁差20 ka天文周期, 且振幅谱曲线的相对振幅能量是偏心率>斜率> 岁差,反映出青山口组沉积序列受到偏心率的影响 最大,其次是斜率,影响最小的是岁差;小波变换验 证了频谱分析的结果。同样,在TX50 井青山口组 频谱分析的结果中找到了11.4,4.5,2.2 m 3 个天 文旋回厚度(图3),其比值为5.18:2.05:1,接近 于5:2:1,小波变换揭示出100 ka偏心率周期

表1 松辽盆地 X 油田青山口组天文周期分析和剥蚀厚度计算

Table 1 Astronomical periods and erosion thickness calculation of Qingshankou Formation in X Oilfield, Songliao Basin

井号	K ₂ y 底深/	K ₂ qn 底深/	100 ka 周期	平均旋回	剥蚀	剥蚀	K ₂ y 底深/	K ₂ qn 底深/	100 ka 周期	平均旋回	剥蚀
	m	m	个数	厚度/m	厚度/m	m	m	个数	厚度/m	厚度/m	
TX1	397.5	830.2	36	12.02	84	TX25	465.0	869.0	35	11.54	92
TX3	444.5	903.5	37	12.41	74	TX26	413.5	886.2	38	12.44	62
TX4	412.0	852.6	36	12.24	86	TX27	459.0	934.5	39	12.19	49
TX5	488.0	932.5	36	12.35	86	TX28	459.0	960.5	41	12.23	24
TX6	846.5	1 315.0	42	11.15	11	TX30	508.5	988.0	42	11.42	11
TX7	672.5	1 095.0	36	11.74	82	TX31	547.5	1 084.5	43	12.49	0
TX8	506.0	953.4	37	12.09	73	TX32	364.0	822.1	38	12.06	60
TX9	961.5	1 418.2	40	11.42	34	TX33	414.0	960.6	43	12.71	0
TX10	565.0	991.5	35	12.19	98	TX35	618.0	1 117.6	43	11.62	0
TX11	620.0	1 035.0	37	11.22	67	TX37	732.5	1 184.0	39	11.58	46
TX12	534.5	1 027.2	40	12.32	37	TX39	520.5	924.0	36	11.21	78
TX13	547.5	1 008.5	40	11.53	35	TX41	733.0	1 196.8	38	12.21	61
TX14	637.5	1 133.6	40	12.40	37	TX42	446.5	902.0	40	11.39	34
TX15	440.0	879.0	37	11.86	71	TX43	505.0	950.5	36	12.38	87
TX17	1 038.5	1 538.2	40	12.49	37	TX44	429.0	826.0	36	11.03	77
TX18	540.0	946.0	36	11.28	79	TX45	576.0	996.0	36	11.67	82
TX20	508.0	903.0	35	11.29	90	TX46	817.0	1 257.0	37	11.89	71
TX21	492.0	956.0	39	11.90	48	TX47	546.0	958.5	36	11.46	80
TX22	478.5	915.0	38.5	11.34	51	TX48	742.5	1 212.5	42	11.19	11
TX23	520.0	996.0	43	11.07	0	TX49	588.0	1 056.1	39	12.00	48
TX24	498.0	976.0	42	11.38	11	TX50	574.0	1 079.6	43	11.76	0

图 3 松辽盆地 X 油田 TX37 井和 TX50 井青山口组旋回地层分析

Fig.3 Astronomical analysis of Qingshankou Formation in wells TX37 and TX50, X Oilfield, Songliao Basin

的能量最强;其中 100 ka 偏心率周期对应的旋回 厚度,频谱分析的结果 11.4 m 和滤波计算的结果 11.76 m 略有差异,但在允许的范围内。对研究区 42 口探井进行频谱分析和小波变换,均得到相同的结论。在青山口组沉积过程中,偏心率信息比较完整地保存在地层中,能量较强;而斜率和岁差受

到构造运动、气候周期等的强烈干扰,其信息断断 续续地被记录下来,能量较弱。因此,选择信息连续、能量较强的 100 ka 偏心率周期计算地层剥蚀 厚度。

对研究区 42 口探井青山口组的 100 ka 偏心 率周期进行高斯带通滤波,提取旋回地层信息。以 TX14、TX6、TX50 和 TX37 井为例,总体特点是在地 层顶底处的旋回信息较明显,而其间的信息能量较 弱,反映出青山口组沉积开始与结束时,沉积环境 发生明显变化。沉积开始时发生明显的水进,沉积 结束时发生明显的水退,而其间出现多幕次级水 进一水退事件(图 2)。经过滤波,TX14、TX6、TX50 和 TX37 井分别检测出 40、42、43 和 39 个 100 ka 偏心率周期(图 4)。在同一稳定沉积区域内,地层 记录的 100 ka 偏心率周期个数应相同,但研究区 滤波结果显示,42 口探井记录的 100 ka 偏心率周 期的数量不尽相同(表1),介于 35~43 个之间,说 明存在地层缺失现象,产生这种现象的原因极有可 能是剥蚀作用。因此,利用地层记录的 100 ka 偏 心率周期个数的差异,可以用来恢复剥蚀厚度。

3 地层剥蚀厚度

3.1 计算方法及过程

根据研究区 42 口探井青山口组 100 ka 偏心 率周期的滤波结果,最大值为 43,最小值为 35,将 记录 43 个 100 ka 偏心率周期的地层定为完整的 沉积序列(未遭受剥蚀),而低于此值的地层被认 定为遭受剥蚀,此剥蚀厚度为青山口组现今埋藏深 度下的"最小视剥蚀厚度"。

以TX37井为例,姚家组底深为732.5 m,青山

口组底深为1184 m,研究层段共记录 39 个100 ka 偏心率周期,平均旋回厚度为(1184-732.5)/39 = 11.58 m,与频谱分析的结果近乎一致。由于缺失 4 个100 ka 偏心率周期,因此缺失的地层厚度应为 (43-39)×11.58 = 46 m,即 TX37 井青山口组被剥 蚀地层厚度为46 m。按照上述方法,对研究区 42 口探井青山口组的剥蚀厚度进行计算并统计结 果(表1)。

3.2 对比分析

基于研究区目的层段现有的泥岩声波时差资料,以TX44 井计算结果为例进行剥蚀厚度对比分析。TX44 井青山口组顶深为429 m,底深为826 m,目的层段上部主要发育绿灰色和紫红色泥岩,下部主要发育灰黑色、黑色泥岩和黑褐色油页岩。

旋回地层分析法显示,TX44 井青山口组共记录 36 个 100 ka 偏心率周期,平均旋回厚度为 11.03 m,因 此,其青山口组"最小视剥蚀厚度"为(43-36)×11.03 = 77 m。

本区青山口组埋深较浅, 压实规律保存较好, 适合使用泥岩声波时差法。选择厚度超过2m的 泥岩段进行读值,读值点尽可能地分布均匀,读值 时读取1/2幅值处。由于姚家组与嫩江组整合接 触(图5左),所以将其作为不整合面上的一个整 体进行读值;由于青山口组上部埋深较浅且发育大 段泥岩(图5左),因此,将青山口组上部地层作为 不整合面之下的部分进行读值。对不整合面上、下 读取的泥岩声波时差取对数,在散点图上做回归分析,恢复出TX44 井青山口组地层的剥蚀厚度约为 174 m(图5右)。

对比分析旋回地层分析法和泥岩声波时差法, 二者计算结果相差 97 m。旋回地层分析法依据地 层中记录的 100 ka 偏心率周期计算剥蚀厚度,其 精度主要取决于旋回信息的强弱、构造运动的程度 及沉积间断是否存在等。而泥岩声波时差法的准 确性受到泥岩埋深、读值方式等地质和非地质因素 的影响,得到的剥蚀厚度是个估计值。因此,综合 分析认为旋回地层分析法恢复的剥蚀厚度可靠性 较高,可以在研究区推广应用。

3.3 剥蚀厚度分析

基于研究区 42 口探井的计算结果,绘制 X 油 田青山口组剥蚀厚度平面分布图(图 6)。H 背斜 是剥蚀量高值区,剥蚀厚度呈东北—西南条带状分 布,剥蚀厚度在 34~98 m 之间,以 60 m 以上为主; 其西南和东南局部地区的剥蚀厚度较小,在 40 m 左右。M 鼻状构造是剥蚀量低值区,剥蚀厚度有 向南减弱的趋势,剥蚀量在 20~50 m 之间。J 背斜 东北部继承了 H 背斜的剥蚀量高值区,局部剥蚀 厚度高达 70 m;其西北方向、靠近三肇凹陷的地区 出现剥蚀量低值区,普遍低于 20 m。N 鼻状构造 出现大面积的未剥蚀区,主要位于西南部;其东南 方向、靠近长春岭背斜带的局部地区出现剥蚀区 域,剥蚀厚度在 40~60 m 之间。

图 5 松辽盆地 X 油田 TX44 井岩心柱状图(左)和泥岩声波时差计算青山口组剥蚀厚度(右)

Fig.5 Core column chart (left) and mudstone acoustic time difference used to calculate erosion thickness (right) of Qingshankou Formation in well TX44, X Oilfield, Songliao Basin

厝

图 6 松辽盆地 X 油田青山口组剥蚀厚度平面分布 Fig.6 Planar distribution of erosion thickness of Qingshankou Formation in X Oilfield, Songliao Basin

总体上,研究区地层剥蚀厚度呈现出东北高、 西南低的特征,剥蚀厚度在 0~98 m 之间,

未剥蚀区主要分布在西南部 N 鼻状构造,强 烈剥蚀区主要分布在东北部 H 背斜。剥蚀厚度的 分布特征与盆地的构造相吻合。朝阳沟阶地东北 部与东北隆起区的呼兰隆起带相接,东部与东南隆 起区的长春岭背斜带相接,反映出青山口组沉积末 期的构造隆升作用,对朝阳沟阶地产生了局部影 响,其构造挤压应力主要来自东北方向的呼兰隆起 带,至朝阳沟阶地逐渐减弱;同时反映出当时松辽 盆地的沉积中心位于西南或西北方向。

4 结论

(1)松辽盆地 X 油田青山口组存在米氏旋回 天文周期,可检测出 100 ka 偏心率、40 ka 斜率和 20 ka 岁差周期,其中以 100 ka 偏心率周期信号较 强且连续。基于米氏旋回理论计算剥蚀厚度表明, 由东北向西南,剥蚀厚度逐渐减薄,直至出现大面 积分布的未剥蚀区,反映出来自东北方向构造挤压 应力逐渐减弱的过程。

(2)青山口组沉积末期,在松辽盆地东部整体 构造隆升的背景下,高出基准面的地层遭受剥蚀, 同时由于区域构造运动的应力存在着差异,导致地 层剥蚀量分布不均匀。研究结果对朝阳沟阶地深 部地层最大埋深、生烃潜力等指标的评价提供指导 意见,解决了盆地模拟中青山口组沉积时期的构造 演化问题,为油气成藏过程的定量研究提供了 依据。

(3)该方法可操作性较强,不受地层定年的影响,不受剥蚀模型的限制,充分考虑到了先沉积后剥蚀、边沉积边剥蚀的沉积模式,适用范围较广,计 算出的地层剥蚀厚度误差较小。但该方法也存在 不足之处,选取数据时需要排除断层的影响,对无 井、少井区域缺乏预测性的解释。

参考文献:

- [1] 曹强,叶加仁,王巍. 沉积盆地地层剥蚀厚度恢复方法及进展[J].中国石油勘探,2007,12(6):41-46.
 CAO Qiang,YE Jiaren,WANG Wei.Methods of eroded strata thickness restoration in sedimentary basins and its advancement[J].
 China Petroleum Exploration,2007,12(6):41-46.
- [2] 余朝华,肖坤叶,肖高杰,等.乍得 Bongor 反转裂谷盆地中生 界剥蚀厚度恢复及勘探启示[J].中国石油勘探,2013, 18(5):45-53.
 - YU Zhaohua, XIAO Kunye, XIAO Gaojie, et al. Mesozoic erosion

thickness restoration and its implication to exploration in Bongor inverted rift basin, Chad [J]. China Petroleum Exploration, 2013,18(5):45-53.

[3] 彭清华,周江羽,揭异新.镜质体反射率法在南堡凹陷东营 组剥蚀厚度恢复中的应用[J].沉积与特提斯地质,2013, 33(2):89-94.

PENG Qinghua, ZHOU Jiangyu, JIE Yixin. An application of the vitrinite reflectance trend method to the restoration of erosional thickness in the Dongying Formation, Nanpu Depression [J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2):89–94.

 [4] 施小斌,石红才,杨小秋,等.江汉盆地当阳向斜区主要不整 合面剥蚀厚度的中低温热年代学约束[J].地质学报,2013, 87(8):1076-1088.

SHI Xiaobin, SHI Hongcai, YANG Xiaoqiu, et al.Erosion thickness of the main unconformities of Dangyang Subbasin, Jianghan Basin; Constrained by the middle – low thermochronology [J]. Acta Geologica Sinica, 2013, 87(8); 1076–1088.

[5] 石红才,施小斌,杨小秋,等.江南隆起带幕阜山岩体新生代 剥蚀冷却的低温热年代学证据[J].地球物理学报,2013, 56(6):1945-1957.

SHI Hongcai, SHI Xiaobin, YANG Xiaoqiu, et al. The exhumation process of Mufushan granite in Jiangnan Uplift since Cenozoic: Evidence from low-temperature thermochronology [J]. Chinese Journal of Geophysics, 2013, 56(6): 1945–1957.

[6] 袁玉松,郑和荣,涂伟.沉积盆地剥蚀量恢复方法[J].石油 实验地质,2008,30(6):636-642.

YUAN Yusong, ZHENG Herong, TU Wei. Methods of eroded strata thickness restoration in sedimentary basins[J].Petroleum Geology & Experiment, 2008, 30(6):636-642.

- [7] 付晓飞,李兆影,卢双舫,等.利用声波时差资料恢复剥蚀量方 法研究与应用[J].大庆石油地质与开发,2004,23(1):9-11.
 FU Xiaofei,LI Zhaoying,LU Shuangfang,et al.Recovering denudation thickness by interval transit-time[J].Petroleum Geology & Oilfield Development in Daqing,2004,23(1):9-11.
- [8] 胡凯,方小敏,赵志军,等.宇宙成因核素¹⁰Be 揭示的北祁连 山侵蚀速率特征[J].地球科学进展,2015,30(2):268-275.
 HU Kai, FANG Xiaomin, ZHAO Zhijun, et al. Erosion rates of northern Qilian mountains revealed by Cosmogenic ¹⁰Be[J].
 Advances in Earth Science,2015,30(2):268-275.
- [9] 姚益民,徐旭辉,刘翠荣,等.米氏旋回剥蚀量计算方法在泌 阳凹陷的应用[J].石油实验地质,2011,33(5):460-467.
 YAO Yimin,XU Xuhui,LIU Cuirong, et al.Calculation of denudation amount with Milankovitch cycle method: A case study in Biyang Sag [J]. Petroleum Geology & Experiment, 2011, 33(5):460-467.

[10] 黄春菊.旋回地层学和天文年代学及其在中生代的研究现

状[J].地学前缘,2014,21(2):48-66.

HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic $[\,J\,].\,Earth$ Science Frontiers, 2014, 21(2):48–66.

- [11] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J].Astronomy & Astrophysics, 2004, 428(1):261–285.
- [12] 吴淑玉,刘俊.北黄海东部坳陷始新统米兰科维奇旋回特征[J]. 地球科学(中国地质大学学报),2015,40(11):1933-1944.
 WU Shuyu,LIU Jun.Characteristics of Milankovitch cycle in Eocene Formation, eastern depression of the North Yellow Sea Basin [J]. Earth Science (Journal of China University of Geosciences), 2015,40(11):1933-1944.
- [13] 徐启.非震结合油藏非均质性刻画及在朝阳沟油田二三类 区块中应用[D].大庆:东北石油大学,2014.
 XU Qi. The method of characterizing reservoir heterogeneity by integrating well-to-seismic and its application in the second and third kinds of blocks in Chaoyanggou Oilfield [D]. Daqing: Northeast Petroleum University,2014.
- [14] 赵翰卿.大庆油田精细储层沉积学研究[M].北京:石油工业 出版社,2012.

ZHAO Hanqing.Daqing oilfield fine reservoir sedimentology [M]. Beijing:Petroleum Industry Press,2012.

[15] 吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山 口组浮动天文年代标尺的建立[J].地学前缘,2008,15(4): 159-169.

> WU Huaichun, ZHANG Shihong, HUANG Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China[J].Earth Science Frontiers,2008,15(4):159–169.

- [16] 崔军平.松辽盆地东部哈尔滨—绥化地区构造演化及其对 油气成藏条件的控制作用[D].西安:西北大学,2007. CUI Junping.Structural evolution of Haerbin-Suihua area in East Songliao Basin and its control over hydrocarbon formation condition[D].Xi'an:Northwest University,2007.
- [17] 万双双.松辽盆地北部构造演化研究[D].成都:成都理工大学,2012.

WAN Shuangshuang. The study on tectonic evolution in North Songliao Basin [D]. Chengdu: Chengdu University of Technology, 2012.

- [18] SCHULZ M, MUDELSEE M.REDFTT; Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series [J].Computers & Geosciences, 2002, 28(3);421-426.
- [19] TORRENCE C, COMPO G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society, 1998, 79(1):61-78.

(编辑 徐文明)