文章编号:1001-6112(2019)04-0560-09

doi:10.11781/sysydz201904560

珠江口盆地白云凹陷原油

双杜松烷分布特征及地球化学意义

卢晓林¹,石 宁²,李美俊^{1,3},张忠涛²,付 健¹,陈 聪²,赖洪飞¹,代金慧¹ (1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;2.中国海洋石油 南海东部公司, 广东 深圳 518000;3.长江大学 资源与环境学院 油气资源与勘探技术教育部重点实验室,武汉 430100)

摘要:珠江口盆地白云凹陷原油中双杜松烷(W和T)含量丰富。基于 35 个原油样品系统的色谱—质谱(CC-MS)分析,对白云 凹陷双杜松烷分布特征及地球化学意义进行了研究。白云凹陷原油双杜松烷相对含量分布明显呈现"北高东低"的特点。双杜 松烷相对含量在成熟—高成熟原油中基本不随成熟度变化,也不受气洗作用的影响,而主要受油气来源的控制。双杜松烷相对 含量与姥鲛烷/植烷(Pr/Ph)及三环萜烷(C₁₉TT+C₂₀TT)/C₂₃TT 均呈现正相关关系,偏氧化及高陆源输入的环境有利于双杜松烷 的富集。双杜松烷相对含量是指示生源、沉积环境及油源分析的良好指标。此外,双杜松烷 T/W 比值是有效的成熟度参数,适 用于低—中等成熟度的原油和有机质。

关键词:双杜松烷;沉积环境;有机质输入;成熟度;白云凹陷;珠江口盆地 中图分类号:TE122.113 文献标识码:A

Distribution patterns and geochemical implication of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin

LU Xiaolin¹, SHI Ning², LI Meijun^{1,3}, ZHANG Zhongtao²,

FU Jian¹, CHEN Cong², LAI Hongfei¹, DAI Jinhui¹

 (1. State Key Laboratory of Petroleum Resources and Prospecting, College of Geosciences, China University of Petroleum, Beijing 102249, China; 2. CNOOC Nanhai East Corporation, Shenzhen, Guangdong 518000, China; 3. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, College of Resources

and Environment, Yangtze University, Wuhan, Hubei 430100, China)

Abstract: Bicadinanes (W, T) are abundant in crude oils in the Baiyun Sag of the Pearl River Mouth Basin. The distribution patterns and geochemical implication of bicadinanes in crude oils from the study area were investigated based on the gas chromatography-mass spectrometry of 35 oil samples. The relative content of bicadinanes in crude oils is relatively higher in the north but lower in the east of the sag. Maturity and gas washing exert a minor impact on the relative contents of bicadinanes in mature to high-maturity crude oils, while hydrocarbon sources play an important role. The relative content of bicadinanes is positively related to Pr/Ph and tricyclic terpane ($C_{19}TT+C_{20}TT$)/ $C_{23}TT$ ratios, which shows that an oxidizing environment with high terrestrial input is more favorable for the enrichment of bicadinanes. Therefore, the relative content of bicadinanes can be used to define biological source, depositional environment and oil-source correlations. In addition, bicadinane T/W ratios may serve as an index for evaluating maturity in low to medium-maturity crude oils.

Key words: bicadinanes; depositional environment; organic matter input; maturity; Baiyun Sag; Pearl River Mouth Basin

双杜松烷在东南亚地区第三系沉积物和原油 中分布广泛^[1],由于对高等植物输入具有很强的 专属性而成为油气地球化学研究的常用生物标志 物。GRANTHAM 等^[2] 初次在远东原油中发现了 三种 C₃₀-五环烃类化合物,并分别将它们称为 W、 T、R。COX 等^[3] 鉴定了T化合物的结构为"反—

收稿日期:2018-10-29;修订日期:2019-05-23。

作者简介:卢晓林(1992—),男,硕士,从事油气地球化学研究。E-mail: lxlcupgeosci@163.com。

通信作者:李美俊(1972—),男,博士,教授,从事油气地球化学研究。E-mail: meijunli@cup.edu.cn。

基金项目:十三五国家科技重大专项(2016ZX05026-003)、国家自然科学基金项目(41272158)和油气资源与探测国家重点实验室开放课题 (PRP/open-1710)共同资助。

· 561 ·

反---反---双杜松烷",并提出 W 和 R 可能是 T 的 立体异构体。VAN AARSSEN 等^[4]将印尼原油中 W化合物分离出来,并通过核磁共振实验确定了 ₩化合物的结构为"顺—顺—反—双杜松烷"。 MURRAY 等^[5]研究发现双杜松烷存在 W1、W2、T1 等多种异构体。双杜松烷异构体的分布与成熟度 相关,应用双杜松烷异构体构建的相关成熟度参数 具有很强的抗生物降解能力^[6],而且与甾烷及芳 香烃成熟度参数相比受成岩作用的影响更小[7]。 双杜松烷曾被认为主要源自东南亚龙脑香科植物 中达玛树脂的多聚杜松烯^[8],但这一认识并不能 解释在其他非东南亚地区原油中双杜松烷的来 源^[9-10]。VAN AARSSEN 等^[11]通过加热模拟实验 研究,发现另一种分布更为广泛的非热带被子植物 中也含有可生成双杜松烷的树脂化合物。目前双 杜松烷主要来源于高等植物树脂化合物的观点 已普遍被人接受^[12-14]。RANGEL等^[13]根据双杜 松烷-T/(双杜松烷-T+藿烷)参数对哥伦比亚马 格达莱纳盆地原油进行了油源分析。朱俊章等 应用双杜松烷等指标对白云北坡番禺低隆起及 白云东部油气来源进行了分析,确定了具有高等 陆源植物输入的恩平组烃源岩对白云凹陷油气成 藏的贡献^[15-16]。

双杜松烷曾多次被应用于白云凹陷地区的油 源对比。但对于白云凹陷原油中双杜松烷的分布 特征及地球化学意义仍缺乏系统的研究。本文基 于典型原油及烃源岩样品地球化学分析数据,结合 前人的研究成果,系统地阐述了白云凹陷地区双杜 松烷的分布特征及其影响因素,揭示了双杜松烷相 对含量在该区油源分析、成熟度评价及成藏特征研 究中的作用。

1 地质背景

珠江口盆地是中国南海北部最大的新生代沉积盆地,新生代以来经历了裂陷期、断拗期及拗陷期3个大的构造演化阶段^[17]。白云凹陷是珠江口盆地珠二坳陷内的次一级构造单元,包括白云主洼、白云西洼、白云东洼及白云南洼。白云凹陷位于珠二坳陷东部,西邻云开低凸起,东至东沙隆起,北邻番禺低隆起,南与云荔低隆起相接。

白云凹陷新生代地层发育较为完整,沉积厚度 巨大(图1)。其中,珠海组及珠江组是主要的储 层;文昌组、恩平组和珠海组是主要的烃源层。文 昌组发育于盆地快速裂陷期,主要为滨浅湖、湖相 沉积^[18];恩平组沉积时期,河流—三角洲沉积体系

图 1 珠江口盆地白云凹陷新生代地层充填序列

Fig.1 Stratigraphic column showing Cenozoic sedimentary successions in Baiyun Sag, Pearl River Mouth Basin

发育,是煤系烃源岩发育的重要时期;珠海组沉积 于盆地断拗期,主体为三角洲—滨浅海沉积。

2 样品及实验

本文所分析的白云凹陷 20 口井共 35 件原油 样品,分布于白云北坡、白云东北、白云东区和白 云西区,几乎涵盖了白云凹陷目前已发现所有含 油气构造,其中珠江组原油样品 33 件,珠海组原 油样品 2 件,另有 3 件煤系烃源岩样品取自白云 西区恩平组(表 1)。白云凹陷原油密度介于 0.76 ~0.84 g/cm³,以凝析油和轻质油为主,颜色呈淡黄 色至浅褐色。

实验方法如下:取 30 mg 原油或烃源岩抽提物,用石油醚溶解沉淀过滤脱去沥青质,然后在硅胶/氧化铝(3:2)固相层析柱上,依次采用石油醚、石油醚+二氯甲烷(2:1)、二氯甲烷+甲醇(93:7)洗脱出饱和烃、芳香烃、非烃组分。饱和烃及芳香烃组分 GC-MS 分析在 Agilent 6890GC/5975iMS 色谱质谱联用仪上进行;色谱柱采用HP-5MS弹性

井区	井名	深度/m	层位	样品类型	4-/1-MDBT	DNR	$R_{ m ca}/\%$
白云东区	LH9	2 470.0~2 490.5	珠江组	原油	4.60	8.51	1.36
	LH9	2 470.0~2 490.5	珠江组	原油	4.48	7.40	1.16
	LH9	2 735.2	珠海组	原油	3.78	6.99	1.12
	LH8	2 396.4	珠江组	原油	3.10	9.48	1.34
	LH10	2 854.2	珠江组	原油	4.79	9.70	1.36
	LH11	2 976.0~2 998.0	珠江组	原油	4.81	8.70	1.27
	LH11	2 976.0~2 998.0	珠江组	原油	7.24	11.83	1.55
	LH11	3 037.5	珠江组	原油		8.94	1.29
	LW3	3 396.8	珠江组	原油	8.83	7.49	1.16
	LW2	3 149.0~3154.0	珠江组	原油	7.47	8.33	1.24
	LW2	3 111.0~3131.0	珠江组	原油	9.91	18.21	2.13
	LW1	3 123.0~3 127.5	珠海组	原油	3.55	10.82	1.46
	LW1	3 123.0~3 127.5	珠海组	原油	4.48	11.91	1.56
白云东北	LH1	2 127.0~2 136.0	珠江组	原油	4.39	9.82	1.37
	LH1	2 157.0~2 190.0	珠江组	原油	5.41	10.02	1.39
	LH2	2 646.0	珠江组	原油	5.79	11.76	1.55
	LH3	2 574.5	珠江组	原油	5.03	11.70	1.54
	LH3	2 615.5	珠江组	原油	5.23	10.75	1.46
	LH4	2 636.2	珠江组	原油	5.09	11.26	1.50
	LH4	2 646.0	珠江组	原油	5.10	8.57	1.26
	LH4	2 678.0	珠江组	原油	5.63	8.90	1.29
	LH5	2 873.0~2 910.0	珠江组	原油	5.21	10.20	1.41
	LH5	2 873.0~2 910.0	珠江组	原油	5.47	10.03	1.39
白云北坡	LH6	2 467.0~2 480.4	珠江组	原油	3.47	11.55	1.53
	LH6	2 467.0~2 480.4	珠江组	原油	3.23	13.19	1.68
	LH7	2 725.0~2 748.0	珠江组	原油	3.61	2.87	0.75
	PY7	2 711.0~2 726.0	珠江组	原油			
	PY4	3 612.0~3 638.2	珠江组	原油	7.29	8.77	1.28
	PY4	3 650.0~3 660.0	珠江组	原油	8.42	21.86	2.46
	PY3	3 355.0~3 373.0	珠江组	原油	6.53	10.03	1.39
	PY6		珠江组	原油	11.63		
	PY6		珠江组	原油	11.45	15.70	1.90
	PY5	4 028.0~4 050.0	珠江组	原油	9.20	12.47	1.61
白云 西区	PY1	3 070.5	珠江组	原油	8.32	11.54	1.53
	PY1	3 181.0	珠江组	原油	6.89	10.25	1.41
	PY2	4 296.0	恩平组	烃源岩	8.45	9.55	1.34
	PY2	4 345.0~4 370.0	恩平组	烃源岩	6.99	6.32	1.01
	PY2	4 475.0~4 520.0	恩平组	烃源岩	7.46	6.71	1.09

表 1 珠江口盆地白云凹陷原油及烃源岩样品成熟度参数 Table 1 Maturity parameters of oils and source rocks from wells in Baiyun Sag, Pearl River Mouth Basin

注:4-/1-MDBT=4-甲基二苯并噻吩/1-甲基二苯并噻吩;DNR=(2,6-二甲基萘+2,7-二甲基萘)/ 1,5-二甲基萘;*R*_{ca}=[0.49+0.09 (DNR)]/100^[19]。

石英毛细柱(60 m×0.25 mm×0.25 μm)。升温程序: 进样口温度 300 ℃,传输线温度 300 ℃;初温 50 ℃, 保持 1 min,以 20 ℃/min 升至 120 ℃,再以 3 ℃/min 升至 310 ℃,保持 25 min。质谱仪离子源采用电子 轰击方式,电离电压为 70 eV,发射电流 300 μA,扫 描范围为 m/z 50~570。

3 结果与讨论

3.1 化合物的鉴定

双杜松烷质谱开裂形式独特,在多种质荷比的

质量色谱图中均可以检测到很强的碎片离子 峰^[20]。本次研究参考 MURRAY 等^[5]和李可为 等^[20]发表的谱图中双杜松烷出峰位置及相对保留 时间,在m/z 412,m/z 191,m/z 217 质量色谱图中 对白云凹陷原油双杜松烷进行了鉴定。m/z 191 质量色谱图中双杜松烷-W和双杜松烷-T 出峰位 置分别位于 $C_{27}18\alpha(H)$, $21\beta(H)-22$,29,30-三降 藿烷(Ts)和 $C_{27}17\alpha(H)$, $21\beta(H)-22$,29,30-三降 藿烷(Tm)之前(图 2),而在m/z 412 质量色谱图 中双杜松烷(W和T)及 C_{30} 藿烷碎片离子峰尤为

图 2 珠江口盆地白云凹陷 PY7 及 LH8 井原油 m/z 412、m/z 191 和 m/z 217 质量色谱图 R 为双杜松烷 W 和 T 的异构体; OL 为奥利烷; C₃₀ H 为 C₃₀ 藿烷

明显,因此在计算相关参数时均在 m/z 412 质量色 谱图上确定峰面积。

双杜松烷分子量为 412。在电子轰击脱去甲 基后可形成特征离子 397,脱去异丙基后可形成特 征离子 369。双杜松烷 W 与双杜松烷 T 具有相似 的碎片离子,但 369、397 及 412 离子的含量却存在 差异(图 3),暗示双杜松烷 W 与双杜松烷 T 的稳 定性可能不同。本次实验所得双杜松烷质谱图与 BAO 等、VAN AARSSEN 发表的双杜松烷质谱图相 似,而与李可为等所报道的谱图在 369、397 及 412 特征离子的丰度上略有差异^[14,20-21]。BAO 等采用 了 Hewlett-Packard 6890N/5975MS 色谱—质谱仪, 质谱仪电离电压 70 eV,扫描范围 m/z 50~550^[14]; 李可为等所采用色谱—质谱仪为 Finnigan-MatTSQ-4S 型,质谱仪电离电压 70 eV,发射电流 0.23 mA, 扫描范围 m/z 50~500^[20]。本次分析的仪器型号 及质谱检测条件与 BAO 等^[14]相仿。因此实验仪 器及质谱检测条件的不同可能是导致2 组实验质 谱图在 369、397 及 412 特征离子丰度上具有一定 差异的直接原因。

3.2 白云凹陷双杜松烷的分布特征

双杜松烷(W+T)/C₃₀H是衡量原油双杜松烷

412

397

360 400

440

369

图 3 珠江口盆地白云凹陷 PY7 井原油双杜松烷-W 和双杜松烷-T 质谱图

Fig.3 Structure chart and mass spectra of C₃₀ cis-cis-trans (W) and trans-trans-trans (T) bicadinanes in an oil sample from well PY7, Baiyun Sag, Pearl River Mouth Basin

相对含量和油源对比的常用参数^[22]。白云凹陷原 油双杜松烷相对含量整体呈现"北高东低"的特征 (图 4),各井区中白云北坡最高(5.36~10.00),而 白云东区相对含量较低(1.82~5.84)。原因可能 有内因和外因两方面:内因主要是油气来源及原油 成熟度,而外因则体现在原油生成后所遭受的次生 变化,下面将分别予以讨论。

白云凹陷地区天然气藏分布广泛,且该区天然 气藏属于典型的晚期成藏类型[23]。晚期生成的大 量天然气对早期形成的油藏进行了广泛的改造。 气洗作用被认为是研究区原油遭受的最为普遍的 次生改造作用。天然气运移经过油藏,溶解并携带 走原油中可溶组分的过程叫做气洗作用^[24]。前人 研究表明,气洗作用对原油的影响主要体现在正构 烷烃分布、芳香度及石蜡度。正构烷烃在天然气中 的溶解度比相同碳数芳香烃、环烷烃的溶解度高, 气洗作用将导致原油中低碳数正构烷烃含量降 低^[24-25]。双杜松烷和 C₃₀ 藿烷均属于五环三萜类 化合物,分子式均为 C30H52,分子量达 412,其相对 含量受气洗作用影响的可能性不大。陈涛等[26]对 白云凹陷原油的气洗作用进行了研究,结果显示白 云东区 LW-井区原油基本未遭受气洗,而白云东 区 LH-井区原油普遍遭受了不同程度的气洗。但 LW-井区部分井原油双杜松烷相对含量较 LH-井 区原油高,而部分井原油双杜松烷相对含量又较

LH-井区原油低(图4)。气洗作用与双杜松烷相 对含量间似乎并不存在相关关系。因此,气洗作用 可能并非造成白云凹陷双杜松烷分布呈现北高东 低特征的原因。

包建平等[22]在珠江口盆地来源于煤系泥岩的 原油中检测到了丰富的双杜松烷,而在来源于湖相 烃源岩的原油中基本未检测到双杜松烷。双杜松 烷主要源于高等植物的树脂化合物,油气来源是影 响双杜松烷分布的重要因素。白云北坡原油主要 源于恩平组煤系烃源岩[15]。白云东区原油来源于 白云主洼恩平组烃源岩,部分区域有东洼恩平组及 珠海组烃源岩的贡献:白云东北原油则可能来源于 东洼恩平组烃源岩^[16]。恩平组沉积时期受番禺低 隆起物源供给的影响,白云西区至白云北坡发育有 5个大规模的三角洲[27]。而三角洲平原高等植物 大量发育,是煤系烃源岩发育的有利相带^[18]。本 次实验也在白云西区 PY2 井恩平组煤系泥岩中检 测到了高丰度的双杜松烷(图4)。白云西区至白 云北坡广泛发育的恩平组煤系烃源岩为白云北坡 双杜松烷的富集提供了丰富来源。

白云凹陷轻质油、凝析油成熟度普遍较高,多数常规甾萜类生物标志物成熟度指标已失效。多甲基萘系列相关成熟度参数(MNR、DNR等)在整个生油窗范围,甚至到湿气阶段仍可作为指示成熟度的参数^[28-29]。烷基二苯并噻吩及C₂₇藿烷相对稳

Fig.4 Distribution patterns of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin

图 5 珠江口盆地白云凹陷原油双杜松烷相对含量与成熟度关系 MNR=2-甲基萘/1-甲基萘

Fig.5 Relative content of bicadinanes vs. maturity of crude oils from Baiyun Sag, Pearl River Mouth Basin

定性较高,其相关成熟度参数适合用于指示成熟— 高熟原油的成熟度^[30-31]。本次研究选取了 MNR、 DNR、4-MDBT/1-MDBT、Ts/(Ts+Tm)和 R_{ca}来衡 量原油的成熟度。相关图中数据点整体分布散乱, 各井区成熟度参数与双杜松烷(W+T)/C₃₀H均未 呈现出明显的相关性(图 5)。白云北坡原油及白 云东区原油成熟度 R_{ca}基本均介于 1.0%~2.0%, 而白云北坡原油双杜松烷相对含量却明显高于 白云东区(图 5d)。并且白云东北原油成熟度相 近,而双杜松烷(W+T)/C₃₀H 值差异变化很大。 图 5a-c 也基本呈现出相似的特征。因此白云凹 陷原油成熟度并非是影响双杜松烷分布的主控 因素。

3.3 原油中双杜松烷地球化学意义

3.3.1 生源与沉积环境意义

姥植比是指示生源和沉积环境的常用指标。 Pr/Ph大于 3.0 指示沉积在氧化环境下陆源有机 质输入。 C_{19} 和 C_{20} 三环萜烷化合物(C_{19} TT 和 C_{20} TT)可能来源于二萜类先质,指示陆源母质输 入^[32]。而海相、咸水湖相烃源岩及原油中则往往 富含 C_{23} 三环萜烷^[33]。(C_{19} TT+ C_{20} TT)/ C_{23} TT 是 指示生源、油源对比的常用参数。白云凹陷地区原 油 Pr/Ph较高,主要介于 3.1~7.7。双杜松烷含量 与 Pr/Ph具有一定的正相关性(图 6),与(C_{19} TT+ C_{20} TT)/ C_{23} TT也呈现良好的正相关(图7)。高等

图 6 珠江口盆地白云凹陷原油 Pr/Ph 与双杜松烷(W+T)/C₃₀藿烷关系

Fig.6 Pr/Ph vs. bicadinanes $(W+T)/C_{30}H$ in oils from Baiyun Sag, Pearl River Mouth Basin

图 7 珠江口盆地白云凹陷原油(C₁₉TT+C₂₀TT)/C₂₃TT 与双杜松烷(W+T)/C₃₀藿烷关系

Fig.7 $(C_{19}TT+C_{20}TT)/C_{23}TT$ vs. bicadinanes $(W+T)/C_{30}H$ in oils from Baiyun Sag, Pearl River Mouth Basin

陆源输入及偏氧化的沉积环境有利于双杜松烷的 富集。但是,值得注意的是双杜松烷(W+T)/C₃₀H 与 Pr/Ph 的正相关关系并不是绝对的。比如白云 西区原油相对于白云东北原油具有较高的 Pr/Ph (均值 7.4),而双杜松烷(W+T)/C₃₀H 值却很低。 姥鲛烷和植烷主要来源于光合生物中叶绿素 a 和 紫硫细菌中叶绿素 a 和 b^[34],而双杜松烷主要来源 于高等植物的树脂。姥鲛烷和植烷与双杜松烷本 质上具有不同的来源,这也就决定了两者的含量并 不可能呈绝对的正相关关系。

双杜松烷是指示陆源植物输入的分子标志物, 在白云凹陷地区双杜松烷相对含量基本不受本区 域主要次生作用的影响,是判识油气来源的良好指 标。白云北坡及白云西区原油具有相对低奥利烷、 高双杜松烷的特征,而白云东区原油则呈现高奥利 烷、相对低双杜松烷的特点(图8)。白云北坡及白 云西区原油与恩平组煤系泥岩具有更近的亲缘关 系,这一认识与前人的研究结论相符^[18]。奥利烷/ C₃₀藿烷与双杜松烷(W+T)/C₃₀藿烷相关图也揭 示,双杜松烷与奥利烷具有不同的生物来源和成因 演化过程。恩平组沉积时期,白云北坡及白云东区 发育高等植物的种类存在差异。

3.3.2 双杜松烷与成熟度关系

CURIALE 等^[35]在对成熟度较低的缅甸原油 进行研究时提出 T/W 随 Ts/Tm 的增加而减小,双 杜松烷-T 含量可能随成熟度增加而减少。Ts/Tm 小于 0.5 时,T/W 随成熟度的增加而减小;而当 Ts/Tm 大于 0.5 时,T/W 值则基本维持恒定(主要 介于2.0~4.0)(图9)。在低成熟的原油中T/W可

图 8 珠江口盆地白云凹陷原油和烃源岩中 OL/C_{an}藿烷与双杜松烷(W+T)/C_{an}藿烷关系

Fig.8 OL/ C_{30} H vs. bicadinanes (W+T)/ C_{30} H in oils from Baiyun Sag, Pearl River Mouth Basin

图 9 珠江口盆地白云凹陷原油及缅甸原油 Ts/Tm 与双杜松烷 T/W 关系

Fig.9 Ts/Tm vs. bicadinanes T/W in oils from Baiyun Sag, Pearl River Mouth Basin and Myanmar

能是反映成熟度的指标,而在较高成熟度的原油中 T/W 将不再是有效的指标。

VAN AARSSEN 等通过现代树脂和化石的加 热试验,获得了双杜松烷的前驱物多聚杜松烯^[8]。 这一实验证明了烃源岩生烃早期原油中双杜松烷 的含量可能受热成熟度的影响。研究发现,白云凹 陷不同生源及不同成熟度原油双杜松烷-W/C₃₀H 与双杜松烷-T/C₃₀H 均呈线性正相关(图 10),并 且可以拟合出公式(1),相关系数达 0.94。

$$\frac{T_{a}}{H} = \frac{2W_{a}}{H} + 1 \tag{1}$$

式(1)两边同乘 H,再除以 W。可变形为:

图 10 珠江口盆地白云凹陷原油双杜松烷-W 与双杜松烷-T相对含量关系

Fig.10 Bicadinanes W/C₃₀H vs. bicadinanes T/C₃₀H in oils from Baiyun Sag, Pearl River Mouth Basin

式(1)两边加 W_a/H,可变形为:

$$\frac{W_{a} + T_{a}}{H} = \frac{3W_{a}}{H} + 1$$
(3)

公式中 T_a 代表双杜松烷 T 丰度, W_a 为双杜松 烷 W 丰度, 而 H 代表 C_{30} 藿烷的丰度。在较高成熟 度的原油(Ts/Tm>0.5)中 T/W 基本恒定不随成熟 度变化(图9), 那么由公式(2)可推导出 W_a/C_{30} H 基本稳定, 再由公式(3)可得($W_a + T_a$)/H 值基本恒 定。即当成熟度较高时, 双杜松烷(W+T)/ C_{30} H 值 基本不随成熟度变化, 这一结论与图 5 所示结果 一致。

4 结论

(1)白云凹陷原油双杜松烷分布整体呈现"北 高东低"的特征,奥利烷分布却呈"北低东高"的特 点,表明始新统恩平组沉积时期白云北坡和白云东 区发育陆源植物的种类不同。

(2)在低成熟度的原油中双杜松烷的相对含量可能受成熟度影响,而成熟至高成熟的原油中双 杜松烷的相对含量主要受油气来源的控制。白云 凹陷地区原油成熟度较高,双杜松烷的分布几乎不 受原油成熟度及气洗作用的影响,是判识原油来源 的可靠参数。

(3)高等陆源母质输入及偏氧化的环境有利 于双杜松烷的富集。双杜松烷的相对含量可作为 指示生源和沉积环境的指标。

(4)在低成熟(Ts/Tm<0.5)的原油中 T/W 是 反映成熟度的指标,而在较高成熟度(Ts/Tm>0.5)的原油中 T/W 值基本不随成熟度变化而变化。

参考文献:

 [1] 张水昌,龚再升,梁狄刚,等.珠江口盆地东部油气系统地球 化学 I:油组划分、油源对比及混源油确定[J].沉积学报, 2004,22(S1):15-26.

ZHANG Shuichang, GONG Zaisheng, LIANG Digang, et al. Geochemistry of petroleum systems in the eastern Pearl River Mouth Basin- I : oil family classification, oil-source correlation and mixed oil analysis [J]. Acta Sedimentologica Sinica, 2004, 22(S1):15-26.

- [2] GRANTHAM P J, POSTHUMA J, BAAK A. Triterpanes in a number of Far-Eastern crude oils [M]//BJORØY M, ALBRECHT C, CORNFORD C, et al. Advances in organic geochemistry 1981.New York ; John Wiley & Sons, 1983 : 675-683.
- [3] COX H C, DE LEEUW J W, SCHENCK P A, et al. Bicadinane, a C₃₀ pentacyclic isoprenoid hydrocarbon found in crude oil[J]. Nature, 1986, 319(6051): 316-318.

- [4] VAN AARSSEN B G K, KRUK C, HESSELS J K C, et al. Ciscis-trans-bicadinane, a novel member of an uncommon triterpane family isolated from crude oils [J]. Tetrahedron Letters, 1990, 31(32):4645-4648.
- [5] MURRAY A P, PADLEY D, MCKIRDY D M, et al. Oceanic transport of fossil dammar resin: the chemistry of coastal resinites from South Australia [J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3049-3059.
- [6] MURRAY A P, SUMMONS R E, BOREHAM C J, et al. Biomarker and *n*-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting [J]. Organic Geochemistry, 1994,22(3/5):521-542.
- SOSROWIDJOJO I B, MURRAY A P, ALEXANDER R, et al. Bicadinanes and related compounds as maturity indicators for oils and sediments [J]. Organic Geochemistry, 1996, 24 (1): 43–55.
- [8] VAN AARSSEN B G K, COX H C, HOOGENDOOR P, et al. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia [J]. Geochimica et Cosmochimica Acta, 1990, 54(11):3021-3031.
- [9] VAN AARSSE B G K, DE LEEUW J W, HORSFIELD B. A comparative study of three different pyrolysis methods used to characterize a biopolymer isolated from fossil and extant dammar resins[J].Journal of Analytical and Applied Pyrolysis, 1991, 20:125-139.
- [10] ARMANIOS C, ALEXANDER R, SOSROWIDJOJO I B, et al. Identification of bicadinanes in Jurassic organic matter from the Eromanga Basin, Australia [J]. Organic Geochemistry, 1995, 23(9):837-843.
- [11] VAN AARSSEN B G K, DE LEEUW J W, COLLINSON M, et al.Occurrence of polycadinene in fossil and recent resins [J]. Geochimica et Cosmochimica Acta, 1994, 58(1):223-229.
- [12] HUANG Baojia, XIAO Xianming, ZHANG Mingqiang. Geochemistry, grouping and origins of crude oils in the western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7):993-1008.
- [13] RANGEL A, MOLDOWAN J M, NIÑO C, et al. Umir formation: organic geochemical and stratigraphic assessment as cosource for Middle Magdalena Basin oil, Colombia [J]. AAPG Bulletin, 2002, 86(12): 2069–2087.
- BAO Jianping, ZHU Cuishan, Liu Yurui, et al. Novel C₂₆ tetracyclic degraded bicadinanes in oil sands from the Haitoubei-Maichen Sag of the Beibuwan Basin, South China Sea [J]. Organic Geochemistry, 2013, 58:89-95.
- [15] 朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起凝析油地 球化学特征及油源分析[J].中国海上油气,2006,18(2): 103-106.

ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Geochemical characteristics and oil sources of condensates in Panyu Low Uplift, Pearl River Mouth basin [J]. China Offshore Oil and Gas, 2006, 18(2):103-106.

[16] 朱俊章,施和生,庞雄,等.白云深水区东部油气成因来源与

成藏特征[J].中国石油勘探,2012,17(4):20-28.

ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Origins and accumulation characteristics of hydrocarbons in eastern Baiyun Deepwater area [J]. China Petroleum Exploration, 2012, 17(4):20-28.

- [17] 邓运华,张功成,刘春成,等.中国近海两个油气带地质理论与勘探实践[M].北京:石油工业出版社,2013.
 DENG Yunhua, ZHANG Gongcheng, LIU Chuncheng, et al.
 Geological theory and exploration of two oil-gas belts in China offshore[M].Beijing:Petroleum Industry Press,2013.
- [18] 李燕,邓运华,李友川,等.珠江口盆地河流—三角洲体系煤 系烃源岩发育特征及有利相带[J].东北石油大学学报, 2016,40(1):62-71.

LI Yan, DENG Yunhua, LI Youchuan, et al. Characteristics and favorable facies of coal-measure source rocks in river-delta system of Pearl River Mouth Basin [J]. Journal of Northeast Petroleum University, 2016, 40(1):62-71.

- [19] RADKE M, RULLKÖTTER J, VRIEND S P. Distribution of naphthalenes in crude oils from the Java Sea; source and maturation effects [J]. Geochimica et Cosmochimica Acta, 1994, 58(17):3675-3689.
- [20] 李可为,潘贤庄.崖 13-1 气田凝析油和煤系地层的双杜松 烷及其地质—地球化学意义[J].中国海上油气(地质), 1990,4(1):33-42.

LI Kewei,PAN Xianzhuang.Condensate of Yacheng 13-1 gas field, dicadinane of coal measure strata and their geology–geochemistry significance [J]. China Offshore Oil and Gas, 1990, 4(1): 33–42.

- [21] VAN AARSSEN B G K, HESSELS J K C, ABBINK O A, et al. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia [J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1231-1246.
- [22] 包建平,陈希文,朱翠山.珠江口盆地原油中C₁₅新倍半萜烷及其母源[J].中国科学(地球科学),2016,46(9):
 1241-1251.

BAO Jianping, CHEN Xiwen, ZHU Cuishan. Novel C_{15} sesquiterpanes and their origin in different crude oils from the Pearl River Mouth Basin of China [J]. Science China (Earth Sciences), 2016, 59(8):1622–1632.

[23] 施和生,秦成岗,高鹏,等.珠江口盆地番禺低隆起—白云凹 陷北坡天然气晚期成藏特征[J].中国海上油气,2008, 20(2):73-76.

> SHI Hesheng, QIN Chenggang, GAO Peng, et al. Late gas accumulation characteristics in Panyu low-uplift and the north slope of Baiyun Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2008, 20(2):73–76.

[24] 黄海平,张水昌,苏爱国.油气运移聚集过程中的地球化学 作用[J].石油实验地质,2001,23(3):278-284. HUANG Haiping, ZHANG Shuichang, SU Aiguo. Geochemical processes in petroleum migration and accumulation [J]. Petroleum Geology & Experiment, 2001, 23(3):278-284.

- [25] THOMPSON K F M.Fractionated aromatic petroleums and the generation of gas-condensates[J].Organic Geochemistry, 1987, 11(6):573-590.
- [26] 陈涛,侯读杰,米巨磊,等.白云凹陷原油气洗作用[J].东北石油大学学报,2015,39(3):60-66.
 CHEN Tao,HOU Dujie,MI Julei, et al.Study on gas washing of crude oils in Baiyun Sag[J].Journal of Northeast Petroleum University,2015,39(3):60-66.
- [27] 李成海,王家豪,柳保军,等.珠江口盆地白云凹陷古近系沉积相类型[J].沉积学报,2014,32(6):1162-1170.
 LI Chenghai, WANG Jiahao, LIU Baojun, et al. Types and distribution of the Paleogene sedimentary facies in Baiyun Depression of Pearl River Mouth Basin [J]. Acta Sedimentologica Sinica,2014,32(6):1162-1170.
- [28] 李美俊,王铁冠.原油中烷基萘的形成机理及其成熟度参数应用[J].石油实验地质,2005,27(6):606-611.
 LI Meijun, WANG Tieguan. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameters [J]. Petroleum Geology & Experiment,2005,27(6):606-611.
- [29] 高栋臣,郭超,姜呈馥,等.鄂尔多斯盆地山西组低成熟度 页岩生烃热模拟[J].石油实验地质,2018,40(3):454-460.
 GAO Dongchen, GUO Chao, JIANG Chengfu, et al. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin [J]. Petroleum Geology & Experiment, 2018, 40(3):454-460.
- [30] 王铁冠,何发岐,李美俊,等.烷基二苯并噻吩类:示踪油藏 充注途径的分子标志物[J].科学通报,2005,50(2): 176-182.

WANG Tieguan, HE Faqi, LI Meijun, et al.Alkyldibenzothiophenes: molecular tracers for filling pathway in oil reservoirs[J].Chinese Science Bulletin, 2004, 49(22):2399–2304.

- [31] RADKE M, WILLSCH H, LEYTHAEUSER D. Aromatic components of coal: relation of distribution pattern to rank [J]. Geochimica et Cosmochimica Acta, 1982, 46(10):1831-1848.
- [32] EKWEOZOR C M, STRAUSZ O P. Tricyclic terpanes in the Athabasca oil sands: their geochemistry [M]//BJORØY M, ALBRECHT C, CORNFORD C, et al. Advances in Organic Geochemistry 1981.New York: John Wiley & Sons, 1983:746-766.
- [33] TAO Shizhen, WANG Chuanyuan, DU Jianguo, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J].Marine and Petroleum Geology, 2015,67:460-467.
- [34] BROOKS J D, GOULD K, SMITH J W.Isoprenoid hydrocarbons in coal and petroleum[J].Nature, 1969, 222(5190):257-259.
- [35] CURIALE J A, KYI P, COLLINS I D, et al. The central Myanmar (Burma) oil family: composition and implications for source[J].Organic Geochemistry, 1994, 22(2):237-255.