文章编号:1001-6112(2022)04-0712-08

Vol.44.No.4

Jul., 2022

岩石密闭热释方法评价页岩含油性特征

——以四川盆地侏罗系大安寨段为例

罗 超^{1,2},张焕旭³,张纪智⁴,石学文^{1,2},徐志尧³,张 宇⁴,吴 伟¹
1.中国石油西南油气田公司页岩气研究院,成都 610051;
2.页岩气评价与开采四川省重点实验室,成都 610051;
3.苏州冠德能源科技有限公司,江苏苏州 215129;
4.中国石油西南油气田公司勘探事业部,成都 610041

摘要:为解决页岩含油性评价受限于游离烃蒸发损失的难题,并考虑页岩含油性评价目的和井场快速分析的需求,在结合井场低 温密闭粉碎技术、改进传统岩石热解方法的基础上,建立了一种岩石密闭热释方法定量评价岩石中游离烃含量的方法。对四川 盆地侏罗系自流井组大安寨段页岩进行方法对比分析表明,岩石热解方法获得 S₀值为 0.001~0.046 mg/g,S₁值为 0.165~ 4.648 mg/g,而密闭热释方法获得 S₀值为 0.026~0.984 mg/g,S₁值为 0.113~5.989 mg/g;密闭热释方法获得的 S₁值与岩石热解方 法获得的 S₁值基本相等,而 S₀值提高了 1~2 个数量级。通过改进升温程序,井场密闭热释方法分别获得不加热条件下、90 ℃以 前、90~300 ℃时单位质量岩石中的烃含量,这不仅获得了更加丰富的含油性数据,而且缩短了检测周期,满足了井场快速分析的 需求。结合泥浆气测、页岩地化参数、储层流体性质等参数,评价了研究井大安寨段页岩含油量"甜点",为页岩油含油性评价提 供了一种新的实验手段。

关键词:密闭粉碎;热释法;游离烃含量;页岩油;大安寨段;侏罗系;四川盆地 中图分类号:TE135 **文献标识码**:A

Evaluation of oil content in shale by sealed thermal desorption:

a case study of Jurassic Da' anzhai Member, Sichuan Basin

LUO Chao^{1,2}, ZHANG Huanxu³, ZHANG Jizhi⁴, SHI Xuewen^{1,2}, XU Zhiyao³, ZHANG Yu⁴, WU Wei¹

1. Shale Gas Research Institute, Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610051, China;

2. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610051, China;

3. Suzhou Grand Energy Technology Co., Ltd., Suzhou, Jiangsu 215129, China;

4. Exploration Division, Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610041, China

Abstract: The oil content in shale is still a contentious issue due to the evaporative losses of free hydrocarbon. Considering the objective of the evaluation of oil content in shale and the demand of fast analysis at wellsite, a newly developed sealed rock thermal desorption method is introduced to quantify the content of free hydrocarbon in rock samples which combined the technique of sealed crushing at low temperature and improved the traditional rock pyrolysis (Rock-Eval). Comparison experiments have been conducted on Jurassic Da' anzhai shale from the Sichun Basin. The S_0 value ranges from 0.001 to 0.046 mg/g, with S_1 value from 0.165 to 4.648 mg/g by routine method of rock pyrolysis. The S_0 value by the sealed thermal desorption method, which ranges from 0.026 to 0.984 mg/g, is about 1-2 order of magnitude higher than that of Rock-Eval. By improving the heating program, the sealed thermal desorption method can obtain the hydrocarbon content per unit mass of rock at temperatures of 5, 5-90 and 90-300 °C, which not only obtains abundant oil-bearing data, but also shortens detection time. Combined with parameters such as mud gas measurement, shale geochemical parameters, and reservoir fluid properties, the "sweet spots" of shale oil in the Da' anzhai Member of the study well were evaluated, providing a new experimental method for evaluating the oil content of shale oil.

Key words: sealed crushing; thermal release; free hydrocarbon content; shale oil; Da'anzhai Member; Jurassic; Sichuan Basin

收稿日期:2021-07-23;修订日期:2022-06-13。

作者简介:罗超(1982—),男,博士,高级工程师,从事页岩气地质研究。E-mail:luochao2001@ petrochina.com.cn。

基金项目:国家自然科学基金青年科学基金项目(41502150)和中国石油股份公司重大现场试验项目(2019F-31-01)资助。

通信作者:张焕旭(1987—),男,博士,高级工程师,从事油气成藏及有机地球化学方面的研究。E-mail:hx_zhang@guande-tech.com。

岩石热解方法凭借其操作简易和分析快速的 优势成为表征页岩油含量的主要研究方法之一。 基于热解 S₁(游离烃)参数建立的地化指标是评价 页岩可动油含量和识别页岩油可开发层段的主流 方法,比如,含油饱和度指数(OSI)^[1]和可动油含 量 $(S_{1-1}, S_{1-2})^{[2]}$ 在众多泥页岩层段的推广和应 用^[3-6].促进了页岩油勘探评价研究。当然.S.的 蒸发损失是普遍存在的,与样品类型(岩性、有机 质含量、渗透性等)、烃类组成、存放时间、样品处 理与制备过程等因素相关,不同条件的岩石样品损 失量差异显著[7]。另一方面,富有机质泥页岩的 S₂(干酪根生烃潜量)参数中含有部分的油,通常为 10%[7],如济阳坳陷沙河街组三段下亚段泥页岩 S,含有约35%的油^[2]。因此,富有机质泥页岩中, 页岩油主要呈有机质吸附/互溶相、矿物颗粒吸附 相和孔隙游离相三种赋存形式^[8]。

在实际应用中,值得注意的是传统热解方法及 其改进方法均未能准确获得 S₀参数,原因在于气 态烃和轻烃(C₁₀₋)在岩石自然风干条件下不到半 小时就达到损失高峰了^[9];出筒样品在地面周 转—储存—粉碎过程中都与自然条件接触,不管如 何控制这个时间,至热解实验时 C₁₀-烃类物质基本 损失殆尽。事实上,C₁₀-烃类物质直接影响着原油 的黏度和品质^[10],轻质组分含量越多,原油的可动 性越强,越有利于生产。因此,岩石中 C₁₀-轻质烃 类组分的评价更值得重视与研究。

为了进一步降低人为和环境因素造成的烃类 损失,定量研究 C₁₀-烃类含量,本文采用井场低温 密闭粉碎技术,并结合密闭热释方法定量岩石中 各组分烃类的含量,为准确评价页岩含油性提供 新方法。

1 样品

样品来自四川盆地川中龙岗构造区页岩油预 探井——L1 井下侏罗统自流井组大安寨段。四川 盆地早侏罗世为一大型内陆开放性淡水湖泊^[11], 大安寨段沉积时为最大湖泛面时期,期间经历一次 水进水退旋回^[12],大安寨段二亚段沉积时期水体 最深,主体为半深湖沉积,沉积了一套灰黑色泥岩 夹介壳灰岩地层。大二亚段自上而下分为3个次 亚段:大二 A 亚段岩性主要为灰黑色页岩夹薄层 介壳灰岩;大二 B 亚段岩性主要为褐灰色介壳灰 岩夹灰黑色页岩;大二 C 亚段岩性主要为灰黑色 页岩。

岩心样品深度 3 510~3 555 m,位于大二 B 亚

段和大二 C 亚段,大二 B 亚段岩性为介壳灰岩夹 灰黑色泥页岩,大二 C 亚段岩性主要为灰黑色泥 页岩;自上而下采集样品 43 块,依次编号 D-1 至 D-43。样品在井场开展密闭粉碎热释分析后,随 机选取了 29 块样品采用保鲜膜密封后带回实验室 开展有机碳含量和岩石热解分析,井场实验与室内 实验的时间间隔为 9 d。

2 实验方法

2.1 有机碳含量测定

有机碳(TOC)含量采用燃烧法在碳硫分析仪 上测定,遵循国家标准《沉积岩中总有机碳的测 定:GB/T19145—2003》。称取约 0.2 g 岩石粉末样 品(100 目),用 5%稀盐酸除去碳酸盐矿物,再将样 品用蒸馏水冲洗至中性,移至 60 ℃烘箱中烘干;去 除碳酸盐矿物的烘干样品移至碳硫分析仪中高温 燃烧(1 200 ℃)确定有机碳含量。TOC 含量用于 计算含油饱和度指数[*OSI*=100S₁/ω(TOC)]^[1]。

2.2 岩石热解分析

岩石热解分析遵循国家标准《岩石热解分析: GB/T18602—2012》,采用程序升温方法,借助氢火 焰离子化检测器在岩石热解分析仪上测定岩石的 $S_0 \ S_1 \ S_2 和 T_{max}$ 值。 $S_0 \ S_1 \ S_2$ 值分别为90,90~300, 300~600 ℃检测的单位质量岩石中的烃含量; T_{max} 值为 S_2 峰最高点对应的温度,指示有机质热裂解 最高温度; S_0+S_1 表示岩石中残留的自由烃含量, S_2 表示有机质热裂解产生的烃量。

本文岩石热解分析的目的是与井场岩石密闭 热释分析结果进行对比研究,因此实验过程中未测 定热解有机碳含量(S₃)和残余有机碳含量(S₄)。

2.3 井场岩石密闭热释分析

井场岩石密闭热释分析系统主要由样品密封 罐、低温粉碎仪、烃类含量检测器和气体发生器组 成(图1)。出筒岩心取块状样品称重之后密封在 样品罐中(图1a),采用非冷媒剂冷冻技术(图1b) 将样品罐冷却至0~5℃,再将罐内样品在低温下 进行粉碎至80~100目,后与烃类检测器进行快接 (图1c),测定岩石中的烃类含量(图1d)。

低温密闭粉碎技术实现了密封罐和样品仓的 一体化,避免了样品转移和处理过程中的烃类损 失,保证了样品在地表的低烃类损失。同样地,密 闭热释分析也采用了程序升温方法和氢火焰离子 检测器。与常规岩石热解方法不同的是:①密闭热 释方法不检测 S₂值;②密闭热释方法在升温之 前增加了低温检测。本文所采用的升温程序为

不加温恒定 3 min, 以 50 ℃/min 升温速率将温度 升至 90 ℃, 恒定 5 min, 再以 50 ℃/min 升温速率 升至 300 ℃, 恒定 12 min。测定不同含油量的一组 已知样品在相同升温程序下的峰面积, 建立峰面积 与含油量的校正曲线, 用于定量未知岩石样品中的 烃含量, 并归一化到样品重量。 根据升温程序,并场岩石密闭热释分析获得 3个信号峰,按出峰顺序分别记为 S_g 、 S_0^* 和 S_1 峰。 基于不加温,90,300 ℃ 3 个温度段密闭热释烃色 谱指纹(图2), S_g 峰以 C_1 — C_5 气态烃为主, S_0^* 峰以 C_6 — C_{10} 轻烃为主, S_1 峰以 C_{10+} 烃类为主,最高检测 到 C_{32} 。 S_g 与 S_0^* 之和相当于岩石热解的 S_0 , S_1 与

Fig.2 Gas chromatograms of hydrocarbons released at different temperatures

岩石热解的 S₁一致。更高碳数烃、有机质吸附/互 溶烃和矿物吸附烃需要在更高的温度下才能挥发 出来,因此岩石热解 S₂峰中残留一部分已生成的 原油^[2,7]。本文采用的密闭热释方法仅用于定量 岩石中游离烃含量。反过来,满足游离烃定量的热 释方法将单个样品分析时间缩短至 25 min,在保证 新鲜岩心含烃量低损失的前提下,使得现场快速定 量岩石游离烃量成为现实,促进了岩石含油量准确 评价方法的发展。

3 实验结果分析

3.1 岩石热解和密闭热释结果对比

井场低温密闭粉碎技术的应用有效解决了出 筒岩心在地面流转过程中的烃类损失难题,结合密 闭热释分析最大程度地获得了准确的含烃量信息。 井场密闭粉碎—热释分析获得大二亚段页岩的 S。 值为 0.011~0.184 mg/g, 平均 0.079 mg/g; S_0^* 值为 0.009~0.801 mg/g, 平均 0.302 mg/g; S_0 值($S_g + S_0^*$) 为 0.026~0.984 mg/g, 平均 0.381 mg/g; S_1 值为 0.113~5.989 mg/g, 平均 1.639 mg/g。岩石热解分析 获得大二亚段页岩的 S_0 值为 0.001~0.046 mg/g, 平均0.014 mg/g; S_1 值为 0.165~4.648 mg/g, 平均 1.436 mg/g(表 1)。

密闭热释 S₁与岩石热解 S₁具有较好的线性相 关性,相关系数为 0.71,密闭热释 S₁较岩石热解 S₁ 高 14%(图 3)。密闭环境有效降低了烃类损失,井 场密闭热释结果是可信的。两种方法获得的 S₀值 差异显著,密闭热释 S₀比岩石热解 S₀高 1~2 个数 量级,平均高 27 倍,说明岩石热解会严重低估页岩 中的轻烃含量,同时也体现了密闭热释的必要性。 另外,介壳灰岩 S₀值增大幅度差异较大,其中样品 D-4 和 D-10 介壳灰岩 S₀值增大不多(表 1),反映

表 1 四川盆地 L1 井侏罗系大安寨段取心层段岩石热解和井场密闭粉碎热解实验数据对比 Table 1 The comparisons of Rock-Eval and in-site sealed thermal release

of core sam	ples from	Jurassic Da	'anzhai member	of wel	l L1,	Sichuan	Basin
-------------	-----------	-------------	----------------	--------	-------	---------	-------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.34 目. /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	刃沺重/ σ・σ ^{−1})
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55/
D-2 3 511.54 MS 1.56 0.034 4.648 4.746 446 0.184 0.801 0.984 5.828 437 0.87 5 D-3 3 511.91 MS 1.28 0.046 2.425 2.444 450 0.148 0.450 0.598 2.835 269 0.94 2 D-4 3 512.56 LS 0.39 0.006 0.364 0.598 458 0.012 0.034 0.046 0.292 86 1.08 0. D-5 3 513.42 LS 1.05 0.001 3.789 4.181 451 0.105 0.331 0.436 2.717 300 0.96 2. D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1. D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 <td< td=""><td>5.025</td></td<>	5.025
D-3 3 511.91 MS 1.28 0.046 2.425 2.444 450 0.148 0.450 0.598 2.835 269 0.94 2 D-4 3 512.56 LS 0.39 0.006 0.364 0.598 458 0.012 0.034 0.046 0.292 86 1.08 0 D-5 3 513.42 LS 1.05 0.001 3.789 4.181 451 0.105 0.331 0.436 2.717 300 0.96 2. D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1. D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 <td< td=""><td>5.252</td></td<>	5.252
D-4 3 512.56 LS 0.39 0.006 0.364 0.598 458 0.012 0.034 0.046 0.292 86 1.08 0. D-5 3 513.42 LS 1.05 0.001 3.789 4.181 451 0.105 0.331 0.436 2.717 300 0.96 2. D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1. D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.	2.156
D-5 3 513.42 LS 1.05 0.001 3.789 4.181 451 0.105 0.331 0.436 2.717 300 0.96 2. D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1. D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.).000
D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1. D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.	2.103
D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0. D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.	1.707
D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1. D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.).172
D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.	1.152
).429
D-10 3 518.17 LS 0.18 0.013 0.165 0.324 448 0.017 0.009 0.026 0.113 77 0.90 0.).000
D-12 3 519.92 LS 0.84 0.001 0.605 1.078 466 0.084 0.247 0.331 1.027 162 1.23 0.).521
D-14 3 521.60 LS 0.71 0.006 0.653 1.077 465 0.074 0.144 0.217 0.606 116 1.21 0.).116
D-15 3 522.07 MS 0.77 0.011 0.522 0.961 462 0.060 0.175 0.235 0.393 81 1.16 0.).000
D-17 3 523.42 MS 0.74 0.001 0.599 0.779 467 0.011 0.126 0.137 0.617 102 1.25 0.).015
D-18 3 524.59 LS 0.88 0.001 1.208 1.430 455 0.052 0.217 0.268 1.335 182 1.03 0.).721
D-19 3 525.70 LS 1.41 0.026 2.321 2.650 462 0.137 0.424 0.561 1.297 132 1.16 0.).447
D-21 3 528.41 MS 0.90 0.011 0.713 0.882 469 0.108 0.260 0.368 0.734 123 1.28 0.).203
D-23 3 530.43 MS 1.04 0.003 0.811 1.112 467 0.079 0.266 0.345 1.214 150 1.25 0.).520
D-25 3 532.88 LS 0.99 0.011 1.007 1.431 468 0.106 0.334 0.440 1.196 166 1.26 0.).651
D-26 3 534.01 MS 1.34 0.022 1.788 1.777 468 0.102 0.376 0.478 1.803 171 1.26 0.).944
D-27 3 535.60 MS 1.54 0.038 2.209 2.750 462 0.125 0.404 0.528 2.939 226 1.16 1.	.931
D-31 3 541.30 MS 0.85 0.005 0.623 0.949 466 0.097 0.196 0.294 0.726 120 1.23 0.).173
D-33 3 543.30 MS 1.13 0.027 1.707 1.745 461 0.056 0.285 0.341 1.697 181 1.14 0.).909
D-35 3 545.20 MS 2.27 0.002 1.253 1.929 464 0.110 0.497 0.607 1.818 107 1.19 0.).155
D-37 3 547.39 MS 1.32 0.040 2.549 2.965 461 0.097 0.493 0.591 2.674 248 1.14 1.	1.946
D-39 3 549.90 MS 1.28 0.017 1.611 1.808 462 0.069 0.306 0.375 2.139 197 1.16 1	1.238
D-41 3 552.30 LS 1.43 0.001 1.644 2.492 464 0.132 0.405 0.537 1.151 118 1.19 0.).260
D-42 3 553.70 LS 0.69 0.026 0.361 0.618 474 0.011 0.078 0.089 0.220 45 1.37 0.).000
D-43 3 554.80 MS 0.79 0.001 0.368 0.886 473 0.054 0.158 0.212 0.414 80 1.35 0).000

1) MS 表示泥页岩, LS 表示介壳灰岩;

2) $S_0 = S_g + S_0^*$;

3) OSI 基于井场密闭粉碎热释结果计算, OSI=100(S_g + S_0^* + S_1)/ ω (TOC);

4) $R_0 = 0.018 T_{\text{max}} - 7.16^{[14]}$

http://www.sysydz.net

图 3 四川盆地侏罗系自流井组大安寨段页岩岩石热解和密闭热释 S₀和 S₁对比

了大安寨段介壳灰岩的孔隙结构存在很强的各向 异性^[13]。

岩石热解 T_{max} 值与镜质体反射率 (R_{o}) 之间具 有良好的相关性, II 型有机质 T_{max} 值与 R_{o} 之间的关 系为 R_{o} =0.018 T_{max} -7.16^[14]。大二亚段灰黑色泥页 岩的 R_{o} 约为 1.14%~1.28%(表 1),平均约为 1.2%。

3.2 TOC 与 S_0 、 S_1 之间的关系

大二亚段页岩的 TOC 含量介于 0.18% ~ 2.27%,其中介壳灰岩 TOC 含量介于 0.18% ~ 1.43%,泥页岩 TOC 含量介于 0.63% ~ 2.27%,结合 岩石热解参数(表 1),判断四川盆地大安寨段泥页 岩具有中等以上生烃能力。

TOC 含量与岩石热解 S_0 、井场密闭热释 S_0 之间的关系存在明显的差异。岩石热解 S_0 与 TOC 含量之间基本不存在相关性(图 4a);井场密闭热释 S_0 与 TOC 含量之间存在较好的相关性(图 4b)。 TOC 含量与岩石热解 S_1 和井场密闭热释 S_1 之间的 关系具有相似的线性相关特征(图 5)。TOC 含量 与密闭热释 S_0 和 S_1 之间的线性关系说明大安寨段 页岩中游离烃含量主要受有机质含量的控制。另 外,图 4b、图 5a 和图 5b 都反映了在 TOC 含量介于 0.6%~2.0%的范围内,大安寨段泥页岩 TOC 与游 离烃含量之间具有较好的线性关系,说明游离烃含 量快速增加的TOC 门限值为0.6%,而TOC 大于

图 5 四川盆地侏罗系自流井组大安寨段页岩 TOC 与岩石热解 S₁和井场密闭热释 S₁之间的关系 Fig.5 Relationship between TOC and S₁ by Rock-Eval and sealed thermal release, respectively, of Da'anzhai shale in Jurassic Ziliujing Formation, Sichuan Basin 2.0%的数据点太少,有待进一步的确定。

3.3 含油饱和度指数

含油饱和度指数(*OSI*)是用于表征石油潜在 可采性的一个地球化学指标,等于石油含量与总有 机碳的比值^[1],该指数基于北美页岩油统计规律 提出。虽然国内外岩石热解升温程序存在差异,但 石油含量采用 300 ℃ 恒温条件下检测的烃含量。 那么对于井场密闭热释分析来说,实测岩石中的石 油含量为 3 个热释峰的总和,故 *OSI*=100(S_g + S_0^* + S_1)/ ω (TOC)。基于井场密闭热释结果,大二亚段 页岩的含油饱和度指数 *OSI* 介于 45~437 mg/g (表 1),其中介壳灰岩 *OSI* 介于 45~300 mg/g,平均 141 mg/g,泥页岩 *OSI* 介于 80~437 mg/g,平均 197 mg/g。

含油饱和度指数反映石油跨越效应,即 OSI 值 大于 100 mg/g,岩石中的原油含量超过了其滞留 能力,表示页岩储层具有开采价值^[7]。根据以上 条件,大二亚段取心层段整体具有较好的原油可采 潜力,其中大二 A 亚段底部—大二 B 亚段灰黑色 泥岩和介壳灰岩互层段整体 OSI 值优于大二 C 亚 段(图 6)。

3.4 气态烃比例与气油比(GOR)预测

页岩储层中的流体是多组分的,流体性质(组成、黏度、相态等)是制定储层开发策略和进行有

效生产的关键参数。气态烃类组分含量对储层流体的黏度和相态(液相、气相、两相共存)具有重要的影响。通常,泥浆气测数据可用于定量预测储层流体性质^[15-16]。

密闭热释分析可准确测定岩样中的气态烃含 量,定义气态烃比例为气态烃含量占总游离烃含量 的比例。岩石中气态烃比例越高,储层流体黏度越 低。另外,气态烃含量越高,原始气油比越大,原油 流动性越好,越有利于页岩油开采。因此,在同一 套页岩地层中,一般高气油比层段是页岩油评价的 甜点。

L1 井侏罗系大安寨段泥浆气全烃组分以甲烷 为主(图 6),气测值约在 3 510 m 分为上下两段,下 段气测值高于上段。上段甲烷气测值较稳定(<2%); 下段甲烷气测值介于 2%~8%,且在 3 510~ 3 522 m 之间存在一个高值区,3 522 m 以下泥页岩层段气 测值随深度缓慢变高。泥浆脱附气湿度在 3 510~ 3 512 m之间较低,约为 23.7%;3 512 m 以下泥浆 脱附气湿度介于 30%~43%。基于泥浆气测数据 计算3 510~3 512 m 的储层流体 *GOR* 值约为 1 700 m³/m³,指示储层流体为凝析油^[7];其余取心层段 *GOR* 值均小于 500 m³/m³,储层流体为正常原 油^[7]。*GOR* 值反映大二亚段泥页岩主要处于黑油 生成阶段^[7],低于镜质体反射率所指示的热成熟

图 6 四川盆地 L1 井侏罗系自流井组大安寨段含油性综合评价

Fig.6 Comprehensive evaluation of oil-content properties of Da'anzhai shale from well L1, Sichuan Basin

http://www.sysydz.net

度阶段,这一方面与干酪根生油气性有关,另一方面可能与油气组成在层段内的分异作用有关。另外,GOR 值指示大二 A 亚段底部储层流体黏度最小,对页岩油生产最有利。

取心层段泥页岩中气态烃比例数据离散度高, 气态烃比例介于 0.4%~12.2%,平均为 4.8%,指示 Ⅱ型干酪根处于生油晚期(凝析油早期生成)阶 段^[17],与气油比和反射率值指示的成熟阶段一致。 值得注意的是,气测高值区对应气态烃比例低值区 (图 6)。溶解气含量高,地层压力相对较高,流体 相对黏度低。地层压力较高的岩层在破碎时溶解 气损失量更大,形成气测高值(3 510~3 520 m 和 3 536~3 558 m 2 个气测相对高值区间),而整个 层段气态烃含量均较低(表 1),游离烃含量在气 测高值层段相对较高(图 6),形成了气态烃比例 低的特征。

3.5 可动油含量

岩石中油含量超过临界值时,多余的油可以不 受残余有机质的吸附作用而自由流动,多余的油便 是岩石中的可动油^[18]。岩石含油量临界值与其总 有机碳含量有关,据推测,每克富有机质岩石能够 滞留 70~80 mg 油,一般采用每克 TOC 滞留 0.1 g 油作为可动油含量计算阀值^[3]。根据 LI 等^[18]提 出的计算方法,L1 井大安寨段取心层段泥页岩中 可动油含量介于 0~5.25 mg/g,平均为 1.06 mg/g, 2/3 层段可动油含量小于 1 mg/g,大二 A 亚段底 部一大二 B 亚段顶部可动油含量较高(图 6)。

综合泥浆气测、页岩地化参数与可动油含量、 储层流体性质等评价参数,川中龙岗地区 L1 井下 侏罗统自流井组大安寨段页岩层段处于生油晚期, 具有良好的页岩油勘探前景。尤其是大二 A 亚段 底部泥岩和大二 B 亚段顶部介壳灰岩具有优良的 含油率和较高的气油比(图 6),是该地区页岩油勘 探的有利层段。

水平井靶窗制定采纳了井场密闭热释评价结 果,靶体深度为3505~3515m。水平井长度1000m, 前800m以大二A亚段底部泥岩为主层段,后 200m以大二B亚段顶部灰岩为主层段;分段压裂 试油结果显示,泥岩为主层段的获油气产量,灰岩 为主层段的则无油气显示。

4 结论

(1)井场密闭热释方法可有效解决页岩岩心 出筒后在地面周转—储存—粉碎过程中低碳烃 (C₁₀₋)的损失难题,快速获得可靠的游离烃含量 数据。

(2)通过对四川盆地川中龙岗构造 L1 井大安 寨段取心层段游离烃含量对比实验表明,井场密闭 热释方法获得的 S₀和 S₁值分别是岩石热解的 27.2 倍和 1.14 倍(平均值)。

(3) L1 井大安寨段取心层段 TOC 含量介于 0.18%~2.27%, S₀值介于 0.026~0.984 mg/g, S₁值 介于 0.113~5.989 mg/g, OSI 值介于 45~437 mg/g, 热 成熟度 R₀介于 1.14%~1.28%, 具有良好的页岩油 勘探前景。

(4)基于井场密闭热释方法计算的气态烃比 例与泥浆气测、游离烃含量和 OSI 值具有相反的指 示意义,说明钻头破碎岩层时溶解气损失量大,残 留量小,形成了气测高、气态烃比例低("一高一 低")的特征。

(5)综合泥浆气测、页岩地化参数与可动油含量、储层流体性质等评价参数,川中龙岗地区 L1 井下侏罗统自流井组大二 A 亚段底部泥岩和大二 B 亚段顶部介壳灰岩具有优良的含油率和较高的气油比,是该地区页岩油勘探的有利层段。

参考文献:

- JARVIE D M, COSKEY R J, JOHNSON M S, et al. The geology and geochemistry of the Parshall Field area, Mountrail County, North Dakota[M]//ESTES-JACKSON J E, ANDERSON D S. Revisiting and Revitalizing the Niobrara in the Central Rockies. Denver, Colo: Rocky Mountain Association of Geologists, 2011: 229-281.
- [2] 蒋启贵,黎茂稳,钱门辉,等.不同赋存状态页岩油定量表征 技术与应用研究[J].石油实验地质,2016,38(6):842-849.
 JIANG Qigui,LI Maowen,QIAN Menhui,et al.Quantitative characterization of shale oil in different occurrence states and its application [J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849.
- [3] JARVIE D M.Shale resource systems for oil and gas: part 2 shale-oil resource systems[M]//BREYER J A.Shale reservoirs giant resources for the 21st century.Tulsa:AAPG,2012;89–119.
- [4] 蒋启贵,黎茂稳,马媛媛,等.页岩油可动性分子地球化学评价方法:以济阳坳陷页岩油为例[J].石油实验地质,2018,40(6):849-854.

JIANG Qigui,LI Maowen,MA Yuanyuan,et al.Molecular geochemical evaluation of shale oil mobility:a case study of shale oil in Jiyang Depression[J].Petroleum Geology & Experiment,2018, 40(6):849-854.

[5] 陶国亮,刘鹏,钱门辉,等.潜江凹陷潜江组盐间页岩含油性及 其勘探意义[J].中国矿业大学学报,2019,48(6):1256-1265. TAO Guoliang,LIU Peng,QIAN Menhui, et al.Oil-bearing characteristics and exploration significance of inter-salt shale in Qianjiang Formation, Qianjiang Depression, Jianghan Basin [J]. Journal of China University of Mining & Technology, 2019, 48(6): 第4期

1256-1265.

[6] 黄振凯,郝运轻,李双建,等.鄂尔多斯盆地长7段泥页岩层 系含油气性与页岩油可动性评价:以H317井为例[J].中国 地质,2020,47(1):210-219.

HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin; a case study of well H317[J]. Geology in China, 2020, 47(1):210-219.

- [7] JARVIE D M.Components and processes affecting producibility and commerciality of shale resource systems [J]. Geologica Acta, 2014, 12(4): 307–325.
- [8] 黎茂稳,金之钧,董明哲,等.陆相页岩形成演化与页岩油富 集机理研究进展[J].石油实验地质,2020,42(4):489-505.
 LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J].Petroleum Geology & Experiment,2020,42(4):489-505.
- [9] ESPITALLÉ J,MARQUIS F,BARSONY I.Geochemical logging[M]// VOORHEES K J.Analytical Pyrolysis-Techniques and Applications.London:Butterworths, 1984:276-304.
- [10] YASIN G, BHANGER M I, ANSARI T M, et al. Quality and chemistry of crude oils [J]. Journal of Petroleum Technology and Alternative Fuels, 2013, 4(3):53-63.
- [11] 张葳,李智武,冯逢,等.川中东北部中一下侏罗统湖相碳酸 盐岩碳氧同位素特征及其古环境意义[J].古地理学报, 2013,15(2):247-259.

ZHANG Wei, LI Zhiwu, FENG Feng, et al. Carbon and oxygen isotopic composition of lacustrine carbonate rocks of the Lower-Middle Jurassic in NE part of central Sichuan Province and their palaeoenvironmental significance [J]. Journal of Palaeogeography, 2013, 15(2):247-259. [12] 杜江民,张小莉,张帆,等.川中龙岗地区下侏罗统大安寨段 沉积相分析及有利储集层预测[J].古地理学报,2015, 17(4):493-502.
 DU Jiangmin, ZHANG Xiaoli, ZHANG Fan, et al. Sedimentary

> facies and reservoir prediction of the Lower Jurassic Da'anzhai Member, Longgang area, central Sichuan Basin [J]. Journal of Palaeogeography, 2015, 17(4):493-502.

- [13] 王拥军,童敏,孙圆辉,等.四川盆地大安寨段介壳灰岩致密 油储层特征[J].石油学报,2019,40(1):42-55.
 WANG Youjun, TONG Min, SUN Yuanhui, et al.Reservoir characteristics of Da'anzhai shell limestone tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2019,40(1):42-55.
- [14] JARVIE D M, CLAXTON B L, HENK F, et al.Oil and shale gas from the Barnett shale, Ft. Worth Basin, Texas [C]//AAPG National Convention.Denver:AAPG,2001.
- [15] SIMA Liqiang, WU Feng, MA Jianhai, et al. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: a case study of the Yingdong Oil/Gas Field in the Qaidam Basin[J].Natural Gas Industry B,2014,1(2):172-177.
- YANG Tao, ARIEF I H, NIEMANN M, et al.Reservoir fluid data acquisition using advanced mud logging gas in shale reservoirs
 C]//Unconventional Resources Technology Conference. Denver:Society of Exploration Geophysicists, 2019.
- [17] TISSOT B P, WELTE D H.Petroleum formation and occurrence [M].
 2nd ed.Berlin Heidelberg: Spinger-Verlag, 1984:518.
- [18] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al.Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143.

(编辑 徐文明)

(上接第711页)

- [24] 田野,田云涛.石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展,2020,35(3):259-274.
 TIAN Ye,TIAN Yuntao.Fundamentals and applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry[J]. Advances in Earth Science,2020,35(3):259-274.
- [25] HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al.Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China [J]. International Journal of Coal Geology, 2019, 213:103278.
- [26] 王强,毛宁,杨妍,等,宁夏庆华煤镜质组和惰质组显微组分的 分子结构及对比分析[J].化工进展,2020,39(S2):142-151.
 WANG Qiang, MAO Ning, YANG Yan, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia [J]. Chemical Industry and Engineering Progress,2020,39(S2):142-151.
- [27] 曹代勇,魏迎春,王安民,等.显微组分大分子结构演化差异 性及其动力学机制:研究进展与展望[J].煤田地质与勘探, 2021,49(1):12-20.

CAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1):12-20.

- [28] BOCKLITZ T, WALTER A, HARTMANN K, et al. How to preprocess Raman spectra for reliable and stable models? [J].Analytica Chimica Acta, 2011, 704(1/2):47-56.
- [29] SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy [J]. Organic Geochemistry, 2017, 106:57–67.
- [30] FERRALIS N, MATYS E D, KNOLL A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy[J].Carbon, 2016, 108:440-449.
- [31] SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation [J]. International Journal of Coal Geology, 2017, 173:150-157.
- [32] 李苗春.下古生界烃源岩有机岩石学特征及其地质意义:以上扬子地区为例[D].南京:南京大学,2014.
 LI Miaochun. The organic petrology and geological significance of Lower Paleozoic source rock: a case study of what in Upper Yangtze region[D].Nanjing:Nanjing University,2014.