留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测

刘明 杨瑞青 杨风丽 刘昊娟 张志萍 王玮 户盼盼

刘明, 杨瑞青, 杨风丽, 刘昊娟, 张志萍, 王玮, 户盼盼. 渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测[J]. 石油实验地质, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178
引用本文: 刘明, 杨瑞青, 杨风丽, 刘昊娟, 张志萍, 王玮, 户盼盼. 渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测[J]. 石油实验地质, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178
LIU Ming, YANG Ruiqing, YANG Fengli, LIU Haojuan, ZHANG Zhiping, WANG Wei, HU Panpan. Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178
Citation: LIU Ming, YANG Ruiqing, YANG Fengli, LIU Haojuan, ZHANG Zhiping, WANG Wei, HU Panpan. Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178

渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测

doi: 10.11781/sysydz2023061178
基金项目: 

国家自然科学基金重大研究计划重点项目 92158207

中国石化华东油气分公司科研项目 34600020-22-ZC0607-0001

详细信息
    作者简介:

    刘明(1982—),男,高级工程师,从事油气勘探研究。E-mail: lium.hdsj@sinopec.com

    通讯作者:

    杨瑞青(1993—),女,博士研究生,从事盆地分析与石油地质研究。E-mail: 2010875@tongji.edu.cn

  • 中图分类号: TE122

Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing

  • 摘要: 南川地区上奥陶统五峰组—下志留统龙马溪组作为重要的页岩气产能层,具有页岩层厚度大,埋藏较深,地应力复杂、方位变化快的特点,地应力场研究对于该区页岩气的有效开发具有重要作用。为明确研究区地应力场特征及展布,通过采用SHELLS有限元应力场模拟方法,以研究区断裂、地形、热流值、岩石物性参数和边界条件为约束,开展了南川地区五峰—龙马溪组的应力场有限元数值模拟研究。结果表明,南川地区最大水平主应力性质以挤压性质为主,总体上存在NW-SE、NE-SW、近EW和近SN四个主应力方向和区域;应变率整体以压应变为主,存在低应变率(数量级别≤-18)、中应变率(数量级别介于-18~-17.6)和高应变率(数量级别≥-17.6)三类区域及相应的NE-SW、NW-SE、SN和EW展布方向;断裂滑移速率性质总体以逆断层性质为主,速率介于0~0.001 2 mm/a之间。将本次模拟的最大水平主应力方向、块体应变率和断裂滑移速率结果分别与实测的钻井最大主应力方向、黔渝地区应变率性质和数量级别、区域断裂发育等数据进行对比,展现出模拟结果与实测结果较高的数据吻合度,说明了模拟结果的准确性。最后,基于模拟结果揭示出的裂缝开启性、裂缝发育情况的信息,对南川地区裂缝储层有利发育区进行了评价,预测了Ⅰ、Ⅱ两类进一步勘探和开发的页岩气裂缝储层有利发育区块。

     

  • 图  1  南川地区区域构造位置

    Figure  1.  Tectonic location of Nanchuan region

    图  2  南川地区上奥陶统五峰组—下志留统龙马溪组断裂分布

    Figure  2.  Distribution of faults of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region

    图  3  南川地区SHELLS应力场模拟边界条件设置

    Figure  3.  Boundary condition setting for SHELLS stress field modeling in Nanchuan region

    图  4  南川地区最大水平主应力方向模拟结果与分区

    Figure  4.  Modeled results and zones of maximum compressive horizontal principal stress direction in Nanchuan region

    图  5  南川地区块体应变率模拟结果与分区

    Figure  5.  Modeled results and zones of strain rates in Nanchuan region

    图  6  南川地区断裂滑移速率模拟结果与分区

    Figure  6.  Modeled results and zones of fault slip rate in Nanchuan region

    图  7  南川地区上奥陶统五峰组—下志留统龙马溪组应力场页岩气有利区预测

    Figure  7.  Predicted favorable targets for shale gas stress field in Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region

    表  1  南川地区上奥陶统五峰组—下志留统龙马溪组主要断裂特征

    Table  1.   Characteristics of major faults of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region

    序号 断裂简称 断裂名称 断裂性质 走向 倾向
    F1 DQF 大千断裂 逆断层 NE/SN SE/E
    F2 QLXF 青龙乡断裂 逆断层 NE SE
    F3 EPQF No.1 平桥东1号断裂 逆断层 NE NW
    F4 EPQF No.2 平桥东2号断裂 逆断层 NE NW
    F5 WPQF 平桥西断裂 逆断层 NE SE
    F6 YJGF 袁家沟断裂 逆断层 NE SE
    F7 LJQF 龙济桥断裂 逆断层 NE SE
    F8 YCGF 阳春沟断裂 逆断层 SN E
    下载: 导出CSV

    表  2  SHELLS应力场模拟的岩石物性参数

    Table  2.   Petrophysical parameters in SHELLS stress field modeling

    参数 数值
    断裂摩擦系数 0.10
    连续介质摩擦系数 0.85
    Biot有效应力系数 1.00
    主要断裂强度减低系数[18] 0.00
    蠕变位错剪应力系数 2.3×109(地壳),9.5×104(地幔)
    Q/nR/K 4 000(地壳),18 314(地幔)
    最大剪应力 5.0×108(地壳),5.0×108(地幔)
    常数n 3
    上地幔绝热温度/K和温度梯度/(K/m) 1 412,6.1×10-4
    岩石圈最大深度/m 1.2×105
    运动参考点(欧拉极) EU (61.066~85.819)
    底部最大牵引力/N 2.00×107
    俯冲剪切带最大剪应力/(N/m) 2.00×1012
    孔隙水密度/(kg/m3) 1 032
    平均岩石密度/(kg/m3) 2 836(地壳),3 332(地幔)
    软流圈密度/(kg/m3) 3 125
    热膨胀系数 2.4×10-5(地壳),3.94×10-5(地幔)
    热导率/[w/(m·K)] 2.7(地壳),3.0(地幔)
    单位体积热辐射 2.4×10-5(地壳),3.94×10-5(地幔)
    地壳、地幔岩石圈最大温度/K 1 223(地壳),1 673(地幔)
    可接受速度误差/(m/s) 1.00×10-14
    注:据文献[14, 39-41]修改。
    下载: 导出CSV

    表  3  南川地区SHELLS应力场模拟边界条件设置

    Table  3.   Boundary condition setting for SHELLS stress field modeling in Nanchuan region

    边界 序号 方向/(°) 大小/(mm/a)
    西边界 1~16 116 1.73×10-3
    南边界 17~23 75 6.3×10-4
    24~37 自由边界
    东边界 38~49 296 6.3×10-4
    50~54 自由边界
    北边界 55~58 自由边界
    59~63 255 6.3×10-4
    63~74 自由边界
    下载: 导出CSV

    表  4  南川地区SHELLS应力场模拟结果与钻井实测值对比

    Table  4.   Comparison of modeled results by SHELLS stress field modeling with measured values in drilled wells in Nanchuan region

    钻井 实测值/(°) 模拟值/(°) 差值/(°)
    JY194-3 89 89 0
    JY10-10 135 135 0
    SY1 60 60 0
    JY8 113 111 2
    JY10 115 120 5
    SY3 60 51 9
    SY5 65 75 10
    NY1 55 44 11
    JY11 85 73 12
    JY201-1 105 120 15
    SY13-3 75 57 18
    SY9-1 135 114 21
    SY2 60 95 35
    下载: 导出CSV

    表  5  南川地区上奥陶统五峰组—下志留统龙马溪组页岩气有利区预测原则

    Table  5.   Principles for prediction of favorable shale gas targets in Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region

    页岩气裂缝储层有利发育区 评价参数及判断标准
    Ⅰ类区:
    同时满足A和B
    Ⅱ类区:
    二者只满足一项
    A.裂缝开启性有利区 1. 最大主应力方向与旁侧断裂夹角≤45°,或
    2. 与主断层距离大于2 km
    B.裂缝发育有利区 1. 应变率数量级别<-17.6,或
    2. 断裂滑移速率<0.00036 mm/a
    下载: 导出CSV
  • [1] 洪太元, 程喆, 许华明, 等. 四川盆地大中型气田形成的主控因素及勘探对策[J]. 石油实验地质, 2021, 43(3): 406-414. doi: 10.11781/sysydz202103406

    HONG Taiyuan, CHENG Zhe, XU Huaming, et al. Controlling factors and countermeasures for exploring large and medium-sized gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 406-414. doi: 10.11781/sysydz202103406
    [2] 王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996

    WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
    [3] HU Panpan, YANG Fengli, LI Sanzhong, et al. Opposite thrust systems under the Subei-South Yellow Sea Basin: a synthesis on the closure of the eastern Tethyan Ocean[J]. Earth-Science Reviews, 2022, 231: 104075. doi: 10.1016/j.earscirev.2022.104075
    [4] YANG Fengli, HU Panpan, ZHOU Xinhuai, et al. The Late Jurassic to Early Cretaceous strike-slip faults in the Subei-South Yellow Sea Basin, Eastern China: constraints from seismic data[J]. Tectonics, 2020, 39(10): e2020TC006091. doi: 10.1029/2020TC006091
    [5] YANG Fengli, ZHOU Xiaofeng, PENG Yunxin, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: an overview[J]. Precambrian Research, 2020, 337: 105563. doi: 10.1016/j.precamres.2019.105563
    [6] 杨瑞青, 杨风丽, 周晓峰, 等. 汉南—川东北灯影组古地理演化: 晚震旦世扬子西北缘拉张背景的沉积学证据[J]. 沉积学报, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm

    YANG Ruiqing, YANG Fengli, ZHOU Xiaofeng et al. Paleogeographic evolution of the Dengying Formation in Hannan-northeastern Sichuan Basin: sedimentary evidence of the extensional tectonic setting for the northwest margin of the Yangtze block in the Late Sinian[J]. Acta Sedimentologica Sinica, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm
    [7] 印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm

    YIN Xingyao, MA Ni, MA Zhengqian, et al. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm
    [8] 张斗中, 汤济广, 蔡俊. 渝东南川地区龙马溪组地应力场特征[J]. 油气藏评价与开发, 2021, 11(2): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102007.htm

    ZHANG Douzhong, TANG Jiguang, CAI Jun. Characteristics of geostress field of Longmaxi Formation in Nanchuan area, eastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(2): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102007.htm
    [9] 张胜利. 构造应力场模拟—有限元理论、方法和研究进展[J]. 地球物理学进展, 2011, 26(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101007.htm

    ZHANG Shengli. The modeling of the tectonic stress field-theroy, method and related research progress on the finite element method[J]. Progress in Geophysics, 2011, 26(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101007.htm
    [10] 向用发, 卢玺, 徐宇浩, 等. 有限元数值模拟法基本原理及其在地质构造变形研究中的应用综述[J]. 四川地质学报, 2019, 39(4): 581-588. doi: 10.3969/j.issn.1006-0995.2019.04.011

    XIANG Yongfa, LU Xi, XU Yuhao, et al. Basic principle of finite element numerical simulation method and its application to study of tectonic deformation[J]. Acta Geologica Sichuan, 2019, 39(4): 581-588. doi: 10.3969/j.issn.1006-0995.2019.04.011
    [11] 吴立新, 卢菁琛, 毛文飞, 等. 基于断层倾角分段变化的玛多地震发震断层构造应力场演化数值模拟分析[J]. 地球物理学报, 2022, 65(10): 3844-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210013.htm

    WU Lixin, LU Jingchen, MAO Wenfei, et al. Sectional fault-inclination-change based numerical simulation of tectonic stress evolution on the seismogenic fault of Madoiearthquake[J]. Chinese Journal of Geophysics, 2022, 65(10): 3844-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210013.htm
    [12] 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602010.htm

    DING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602010.htm
    [13] 李东东. 武陵山区中新生代古构造应力场分析[D]. 北京: 中国地质大学(北京), 2017.

    LI Dongdong. Analysis of the characteristics of palaotectonic stress in area of Wuling Mount[D]. Beijing: China University of Geosciences (Beijing), 2017.
    [14] BIRD P. Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting[J]. Computers & Geosciences, 1999, 25(4): 383-394. doi: 10.3321/j.issn:0254-4164.1999.04.008
    [15] KONG Xianghong, BIRD P. SHELLS: a thin-shell program for modeling neotectonics of regional or global lithosphere with faults[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22129-22131. doi: 10.1029/95JB02435
    [16] BIRD P. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B5): 10115-10129. doi: 10.1029/98JB00198
    [17] BIRD P, KONG Xianghong. Computer simulations of California tectonics confirm very low strength of major faults[J]. GSA Bulletin, 1994, 106(2): 159-174. doi: 10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO;2
    [18] LIU Zhen, BIRD P. Finite element modeling of neotectonics in New Zealand[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2328.
    [19] BIRD P, BEN-AVRAHAM Z, SCHUBERT G, et al. Patterns of stress and strain rate in southern Africa[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8): B08402.
    [20] 庄建建, 杨风丽, 赵文芳. 下扬子区印支—早燕山期的构造特征及应力场模拟[J]. 高校地质学报, 2010, 16(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201004008.htm

    ZHUANG Jianjian, YANG Fengli, ZHAO Wenfang. Tectonic characteristics and numerical stress field simulation in Indosinian-Early Yanshanian stage, Lower Yangtze region[J]. Geological Journal of China Universities, 2010, 16(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201004008.htm
    [21] ZHANG Ruoyu, YANG Fengli, HU Panpan, et al. Cenozoic tectonic inversion in the Northern Depression, South Yellow Sea Basin, East Asia: structural styles and driving mechanism[J]. Tectonophysics, 2021, 798: 228687.
    [22] YANG Fengli, ZHOU Zuyi, ZHANG Na, et al. Stress field modeling of northwestern South China Sea since 5.3 Ma and its tectonic significance[J]. Acta Oceanologica Sinica, 2013, 32(12): 31-39.
    [23] HU Panpan, YANG Fengli, TIAN Lixin, et al. Stress field modelling of the Late Oligocene tectonic inversion in the Liaodong Bay Subbasin, Bohai Bay Basin (northern China): implications for geodynamics and petroleum accumulation[J]. Journal of Geodynamics, 2019, 126: 32-45.
    [24] HU Panpan, YANG Fengli, ZHANG Rucai, et al. Cenozoic extension to strike-slip transition in the Liaodong Bay Subbasin along the Tan-Lu Fault Zone, Bohai Bay Basin: new insights from stress field modelling[J]. Tectonophysics, 2022, 822: 229163.
    [25] DENG Jun, WANG Qingfei. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
    [26] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm
    [27] 朱日祥, 赵盼, 赵亮. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 2022, 52(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202201001.htm

    ZHU Rixiang, ZHAO Pan, ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Science China Earth Sciences, 2022, 65(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202201001.htm
    [28] MVLLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38(6): 1884-1907.
    [29] LI Zhengxiang, LI Xianhua. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
    [30] 颜丹平, 金哲龙, 张维宸, 等. 川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制[J]. 地质通报, 2008, 27(10): 1687-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810012.htm

    YAN Danping, JIN Zhelong, ZHANG Weichen, et al. Rock mechanical characteristics of the multi-layer detachment fault system and their controls on the structural deformation style of the Sichuan-Chongqing-Hunan-Hubei thin-skinned belt, South Gansu, China[J]. Geological Bulletin of China, 2008, 27(10): 1687-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810012.htm
    [31] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm

    MEI Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section[J]. Earth Science(Journal of China University of Geosciences), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm
    [32] 唐永, 梅廉夫, 肖安成, 等. 川东北宣汉—达县地区晚中生代—新生代构造应力场转化及其油气意义[J]. 石油学报, 2013, 34(1): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301006.htm

    TANG Yong, MEI Lianfu, XIAO Ancheng, et al. Transition of tectonic stress field and hydrocarbon significance of the Late Mesozoic-Cenozoic in Xuanhan-Daxian region, northeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301006.htm
    [33] LIU Shugen, DENG Bin, LI Zhiwu, et al. Architecture of basin-mountain systems and their influences on gas distribution: a case study from the Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 2012, 47: 204-215.
    [34] LIU Shugen, YU Yang, DENG Bin, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470.
    [35] JU Wei, WANG Jilin, FANG Huihuang, et al. Paleostress reconstructions and stress regimes in the Nanchuan region of Sichuan Basin, South China: implications for hydrocarbon exploration[J]. Geosciences Journal, 2017, 21(4): 553-564.
    [36] 郭卫星, 唐建明, 欧阳嘉穗, 等. 四川盆地南部构造变形特征及其与页岩气保存条件的关系[J]. 天然气工业, 2021, 41(5): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105003.htm

    GUO Weixing, TANG Jianming, OUYANG Jiasui, et al. Characteristics of structural deformation in the southern Sichuan Basin and its relationship with the storage condition of shale gas[J]. Natural Gas Industry, 2021, 41(5): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105003.htm
    [37] KIRBY S H. Rheology of the lithosphere[J]. Reviews of Geophysics, 1983, 21(6): 1458-1487.
    [38] 王玮, 周祖翼, 郭彤楼, 等. 四川盆地古地温梯度和中—新生代构造热历史[J]. 同济大学学报(自然科学版), 2011, 39(4): 606-613. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201104027.htm

    WANG Wei, ZHOU Zuyi, GUO Tonglou, et al. Early Cretaceous-Paleocene geothermal gradients and Cenozoic tectono-thermal history of Sichuan Basin[J]. Journal of Tongji University (Natural Science), 2011, 39(4): 606-613. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201104027.htm
    [39] 范小林. 中国大陆岩石圈与中新生代盆地构造—热体制[J]. 勘探地球物理进展, 2005, 28(5): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200505006.htm

    FAN Xiaolin. The tectonic-thermoregime of lithosphere and Meso-Cenozoic basin in China's mainland[J]. Progress in Exploration Geophysics, 2005, 28(5): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200505006.htm
    [40] GUO Lianghui, GAO Rui. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Research, 2018, 309: 45-55.
    [41] HE Lijuan. Thermal evolution of the Upper Yangtze Craton: secular cooling and short-lived thermal perturbations[J]. Physics of the Earth and Planetary Interiors, 2020, 301: 106458.
    [42] 郑文俊, 张培震, 袁道阳, 等. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 2019, 25(5): 699-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htm

    ZHENG Wenjun, ZHANG Peizhen, YUAN Daoyang, et al. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 2019, 25(5): 699-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htm
    [43] 汤济广, 汪凯明, 秦德超, 等. 川东南南川地区构造变形与页岩气富集[J]. 地质科技通报, 2021, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm

    TANG Jiguang, WANG Kaiming, QIN Dechao, et al. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm
    [44] 万天丰. 构造应力场研究的新进展[J]. 地学前缘, 1995, 2(1/2): 226-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY502.019.htm

    WAN Tianfeng. The progress of researches on tectonic stress field[J]. Earth Science Frontiers, 1995, 2(1/2): 226-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY502.019.htm
    [45] 李延兴, 杨国华, 李智, 等. 中国大陆活动地块的运动与应变状态[J]. 中国科学(D辑: 地球科学), 2003, 33(S1): 65-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1007.htm

    LI Yanxing, YANG Guohua, LI Zhi, et al. Movement and strain conditions of active blocks in the Chinese mainland[J]. Science in China(Series D: Earth Sciences), 2003, 46(2): 82-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1007.htm
    [46] 李峰. 重庆隔挡式背斜构造的地震危险性研究[D]. 北京: 中国地震局地质研究所, 2015.

    LI Feng. Seismic hazard analysis on the wide spaced anticlines in Chongqing[D]. Beijing: Institute of Geology, China Earthquake Administrator, 2015.
    [47] 庹秀松, 陈孔全, 罗顺社, 等. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件[J]. 石油与天然气地质, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htm

    TUO Xiusong, CHEN Kongquan, LUO Shunshe, et al. Structural characteristics of Qiyueshan Fault and shale gas preservation at the southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htm
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  200
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-10-07
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回