留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断洞体:非碳酸盐岩区油气大规模运聚的可能空间

罗群 王千军 桂诗琦 贺小标 胡婉婧 张曰静 汪亮 曹旭明

罗群, 王千军, 桂诗琦, 贺小标, 胡婉婧, 张曰静, 汪亮, 曹旭明. 断洞体:非碳酸盐岩区油气大规模运聚的可能空间[J]. 石油实验地质, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248
引用本文: 罗群, 王千军, 桂诗琦, 贺小标, 胡婉婧, 张曰静, 汪亮, 曹旭明. 断洞体:非碳酸盐岩区油气大规模运聚的可能空间[J]. 石油实验地质, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248
LUO Qun, WANG Qianjun, GUI Shiqi, HE Xiaobiao, HU Wanjing, ZHANG Yuejing, WANG Liang, CAO Xuming. Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248
Citation: LUO Qun, WANG Qianjun, GUI Shiqi, HE Xiaobiao, HU Wanjing, ZHANG Yuejing, WANG Liang, CAO Xuming. Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248

断洞体:非碳酸盐岩区油气大规模运聚的可能空间

doi: 10.11781/sysydz2025020248
基金项目: 

中国石化胜利油田技术项目 30200018-22-ZC0613-0123

中国石化胜利油田技术项目 30200018-20-ZC0613-0104

详细信息
    作者简介:

    罗群(1963—),男,博士,教授,从事常规与非常规油气成藏及地质评价研究。E-mail: luoqun2002@263.net

    通讯作者:

    王千军(1969—),男,博士,教授级高级工程师,从事油气勘探开发与管理工作。E-mail: wangqianjin873.slyt@sinopec.com

  • 中图分类号: TE122

Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas

  • 摘要: 碳酸盐岩沿断裂发育溶洞形成断溶体是很好理解的,毕竟碳酸盐岩容易被沿断裂活动的流体溶蚀,但在非碳酸盐岩区,流体对非碳酸盐岩的溶蚀作用有限,是否也能形成沿断裂发育的洞穴并能运聚和富集油气?为了证明在非碳酸盐岩区沿断裂也存在大型的洞穴,能形成油气运聚的重要空间,以准噶尔盆地西部车排子隆起为例,通过野外考察、岩心观察、钻井分析、地震解释和物理模拟实验等途径和手段,开展了断裂内部结构、洞穴分布发育特征及油气差异运聚的研究,提出了在非碳酸盐岩区沿断裂的核部能够发育大型洞穴地质体即断洞体的观点。断裂活动中因断裂两盘活动而产生相对位移形成的空洞空间,即断洞体,它可以是断层两盘沿起伏的断层面(带)错动而产生,也可以是两盘沿断裂的倾向拉分而产生。断洞体的形成与溶蚀无关,与断裂面(带)起伏、走向断距或倾向断距、断裂产状及断裂两盘的运动方向有关。断洞体规模可能很大,主要分布于走滑断裂产状发生变化的部位或不同断裂的交叉部位,也可以发育在伸展或张扭应力集中且倾向断距明显的部位,断洞体能够聚集油气形成断洞体油气藏。断洞体的提出有利于解放思想,即在广大的碎屑岩、火山岩、变质岩等溶蚀作用不发育的非碳酸盐岩区,同样可以找到像塔河、顺北(富满)碳酸盐岩地区油气丰富的大型断层体油气藏。

     

  • 图  1  准噶尔盆地西部车排子隆起及周边地区石炭系顶断裂格局

    Figure  1.  Fault pattern at top of Carboniferous in Chepaizi Uplift and surrounding areas in western Junggar Basin

    图  2  因断层面不平整而形成的断洞体示意

    Figure  2.  Fault-cavity body formation caused by uneven fault planes

    图  3  准噶尔盆地西部柳树沟南岸剖面观察点1沿某走滑断裂核部分布的断洞体照片

    Figure  3.  Photos of fault-cavity bodies distributed along strike-slip fault core at observation point 1, southern bank profile of Liushugou, western Junggar Basin

    图  4  准噶尔盆地西部车排子隆起典型钻井揭示的可能断洞体岩心照片

    Figure  4.  Photos of cores of possible fault-cavity bodies obtained from typical drilling wells in Chepaizi Uplift, western Junggar Basin

    图  5  准噶尔盆地西部小西湖与黑油山野外露头小型断洞体油藏照片

    Figure  5.  Photos of small fault-cavity type reservoirs in outcrops in Xiaoxihu and Heiyoushan, western Junggar Basin

    图  6  准噶尔盆地西部乌尔禾沥青脉卫星照片(a)与5号走滑断裂结构及断洞体展布照片(b)

    Figure  6.  Satellite images showing bitumen veins (a) and strike-slip fault structure and fault-cavity body distribution at the fifth bitumen vein (b) in Wuerhe of western Junggar Basin

    图  7  准噶尔盆地西部车排子隆起过排664井—排664侧井的联井地震解释剖面

    Figure  7.  Seismic interpretation of wells connecting through well Pai 664 and its sidetrack well in Chepaizi Uplift, western Junggar Basin

    图  8  走滑断裂内部结构单元与储渗性及断洞体分布模式

    Figure  8.  Internal structural units of strike-slip faults and their reservoir permeability and distribution model of fault-cavity bodies

    图  9  典型井油源对比(a)与准噶尔盆地西部车排子隆起断裂系统及油气运聚模式(b)

    Figure  9.  Oil and source correlation between typical wells (a) and fault system and hydrocarbon migration and accumulation model (b) in Chepaizi Uplift of western Junggar Basin

    图  10  石油沿走滑断裂走向(断洞体)运聚成藏的实验模型

    Figure  10.  Experimental model of oil migration and accumulation along strike-slip fault strike (fault-cavity bodies)

    图  11  常规与非常规油气构造演化与运聚富集动态定量模拟装置系统

    Figure  11.  Dynamic quantitative simulation device system for structural evolution and migration, accumulation, and enrichment of conventional and unconventional hydrocarbons

    图  12  石油沿走滑断裂走向(断洞体)运聚成藏的实验现象与实验过程照片

    Figure  12.  Photos of experimental phenomena and process of oil migration and accumulation along strike-slip fault strike (fault-cavity bodies)

    图  13  石油沿走滑断裂走向(断洞体) 运聚成藏模拟实验的地质解释模式

    Figure  13.  Geological interpretation model for simulation experiments of hydrocarbon migration and accumulation along strike-slip fault strike (fault-cavity bodies)

    图  14  断洞体提出的意义作为非碳酸盐岩区沿断裂走向分布于断层产

    Figure  14.  Hydrocarbon migration and accumulation model at top of Carboniferous in Chepaizi Uplift, western Junggar Basin

    表  1  准噶尔盆地西部车排子隆起石炭系部分探井漏失量与漏失深度等参数统计

    Table  1.   Leakage volume and depth in Carboniferous exploration wells in Chepaizi Uplift, western Junggar Basin

    序号 井名 漏失量/m3 漏失深度/m 亏空体积/m3 亏空深度/m 日产油/t 累计产量/t 产层深度/m
    1 排674 3.0 1 091.05 34.0 1 091.05 0.05 15.700 1 043.62
    2 排690 0.3 772.14 0.00 0.002 1 034.53
    3 排664侧 42.5 820.80
    4 排664侧 32.0 874.00
    5 排664侧 18.0 1 394.14 27.3 1 477.00 14.70 97.400 1 477.00
    6 排665 10.4 1 052.00
    7 排665 34.5 776.86
    8 排672 7.0 1 207.00 21.0 1 207.00
    下载: 导出CSV

    表  2  石英砂目数与渗透率的关系

    Table  2.   Relationship between mesh number and permeability of quartz sand

    序号 石英砂目数 渗透率/10-3 μm2
    1 180 1 156
    2 100 2 266
    3 80 3 746
    4 60 5 596
    5 40 7 816
    下载: 导出CSV
  • [1] 王彧嫣, 樊大磊, 黄书君, 等. 2022年国内外油气资源形势分析及展望[J]. 中国矿业, 2023, 32(1): 16-22.

    WANG Yuyan, FAN Dalei, HUANG Shujun, et al. Domestic and international oil & gas resources situation analysis and outlook in 2022[J]. China Mining Magazine, 2023, 32(1): 16-22.
    [2] 罗群, 黄捍东, 庞雄奇, 等. 自然界可能存在的断层体圈闭[J]. 石油勘探与开发, 2004, 31(3): 148-150. doi: 10.3321/j.issn:1000-0747.2004.03.042

    LUO Qun, HUANG Handong, PANG Xiongqi, et al. A kind of possible natural fault petroleum trap[J]. Petroleum Exploration and Development, 2004, 31(3): 148-150. doi: 10.3321/j.issn:1000-0747.2004.03.042
    [3] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
    [4] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
    [5] 杨德彬, 鲁新便, 鲍典, 等. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366.

    YANG Debin, LU Xinbian, BAO Dian, et al. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin[J]. Oil & Gas Geology, 2024, 45(2): 357-366.
    [6] WANG Xintong, WANG Jian, CAO Yingchang, et al. Characteristics, formation mechanism and evolution model of Ordovician carbonate fault-controlled reservoirs in the Shunnan area of the Shuntuogole lower uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2022, 145: 105878.
    [7] 卢志强, 马乃拜, 尼加提, 等. 顺北油田深层断溶体内部结构物探表征研究[J]. 内蒙古石油化工, 2022, 48(6): 115-120. doi: 10.3969/j.issn.1006-7981.2022.06.028

    LU Zhiqiang, MA Naibai, NI Jiati, et al. Research and application of fault-karst characterization technology in Shunbei oilfield[J]. Inner Mongolia Petrochemical Industry, 2022, 48(6): 115-120. doi: 10.3969/j.issn.1006-7981.2022.06.028
    [8] 常少英, 曾溅辉, 徐旭辉, 等. 碳酸盐岩断溶体内部结构识别技术及应用[J]. 石油地球物理勘探, 2022, 57(2): 414-422.

    CHANG Shaoying, ZENG Jianhui, XU Xuhui, et al. Identification technology for internal structures of carbonate fault-karst and its application[J]. Oil Geophysical Prospecting, 2022, 57(2): 414-422.
    [9] 程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征[J]. 石油学报, 2020, 41(3): 301-309.

    CHENG Hong, WANG Yan, LU Xinbian. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area[J]. Acta Petrolei Sinica, 2020, 41(3): 301-309.
    [10] LU Xinbian, WANG Yan, YANG Debin, et al. Characterization of paleo-karst reservoir and faulted karst reservoir in Tahe Oilfield, Tarim Basin, China[J]. Advances in Geo-Energy Research, 2020, 4(3): 339-348.
    [11] SUN Ke, LIU Huiqing, LEUNG J Y, et al. Investigation on water- drive performance of a fault-karst carbonate reservoir under different well patterns and injection-production modes based on 2D visualized physical models[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110925.
    [12] SHI Wenyang, CHENG Jian, LIU Yongchuan, et al. Pressure transient analysis of horizontal wells in multibranched fault-karst carbonate reservoirs: model and application in SHB oilfield[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111167. doi: 10.1016/j.petrol.2022.111167
    [13] HU Xiangyang, ZHENG Wenbo, ZHAO Xiangyuan, et al. Quantitative characterization of deep fault-karst carbonate reservoirs: a case study of the Yuejin block in the Tahe oilfield[J]. Energy Geoscience, 2023, 4(3): 100153. doi: 10.1016/j.engeos.2022.100153
    [14] 张长建, 杨德彬, 蒋林, 等. 塔里木盆地塔河北部"过溶蚀残留型"断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383.

    ZHANG Changjian, YANG Debin, JIANG Lin, et al. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2024, 45(2): 367-383.
    [15] 杨德彬, 鲁新便, 高志前, 等. 塔北深层海相碳酸盐岩断溶体成藏认识及油藏特征[J]. 地学前缘, 2023, 30(4): 43-50.

    YANG Debin, LU Xinbian, GAO Zhiqian, et al. Hydrocarbon accumulation and reservoir characteristics of deep marine fault-karst reservoirs in northern Tarim Basin[J]. Earth Science Frontiers, 2023, 30(4): 43-50.
    [16] 曹立迎, 林会喜, 曹飞, 等. 基于数值试井的断溶体油藏储集体动态表征[J]. 油气地质与采收率, 2023, 30(6): 150-159.

    CAO Liying, LIN Huixi, CAO Fei, et al. Dynamic characterization of reservoir spaces in fault-karst reservoir based on numerical well testing[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 150-159.
    [17] 段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212.

    DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
    [18] 王威, 凡睿. 四川盆地北部须家河组"断缝体"气藏特征及勘探意义[J]. 成都理工大学学报(自然科学版), 2019, 46(5): 541-548.

    WANG Wei, FAN Rui. Characteristics of Xujiahe Formation fault-fracture reservoirs in the northern Sichuan Basin and its exploration significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(5): 541-548.
    [19] 何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密—低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4): 710-718.

    HE Faqi, LIANG Chengchun, LU Cheng, et al. Identification and description of fault-fracture bodies in tight and low permeability reservoirs in transitional zone at the south margin of Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 710-718.
    [20] 何发岐, 齐荣, 袁春艳, 等. 鄂尔多斯盆地南部地区断裂构造与油气成藏关系再认识: 以彬长地区为例[J]. 地球科学, 2024, 49(11): 4082-4097.

    HE Faqi, Qi Rong, YUAN Chunyan, et al. Further understanding of relationship between fault characteristics and hydrocarbon accumulation in Binchang area, Ordos Basin[J]. Earth Science, 2024, 49(11): 4082-4097.
    [21] REN Junjie, FANG Ningyuan, ZHENG Qiao, et al. Semi-analytical model of a multi-wing fractured vertical well in linear composite reservoirs with a leaky fault[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107143.
    [22] 刘振峰, 刘忠群, 郭元岭, 等. "断缝体"概念、地质模式及其在裂缝预测中的应用: 以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例[J]. 石油与天然气地质, 2021, 42(4): 973-980.

    LIU Zhenfeng, LIU Zhongqun, GUO Yuanling, et al. Concept and geological model of fault-fracture reservoir and their application in seismic fracture prediction: a case study on the Xu 2 Member tight sandstone gas pool in Xinchang area, Western Sichuan Depression in Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 973-980.
    [23] 胡张明, 胡明毅, 喻意, 等. 断缝体识别及储层发育模式: 以准噶尔盆地玛湖凹陷玛东地区百口泉组为例[J]. 断块油气田, 2024, 31(2): 283-288.

    HU Zhangming, HU Mingyi, YU Yi, et al. Fault-fracture body identification and reservoir development model: taking Baikouquan Formation in Madong area of Mahu Sag, Junggar Basin as an example[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 283-288.
    [24] 何发岐, 李俊鹿, 高一龙, 等. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力[J]. 油气藏评价与开发, 2024, 14(5): 667-677.

    HE Faqi, LI Junlu, GAO Yilong, et al. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677.
    [25] 尹帅, 田涛, 李俊鹿, 等. 鄂尔多斯盆地西南缘延长组断缝体特征及对油藏的调控作用[J]. 油气地质与采收率, 2024, 31(1): 1-12.

    YIN Shuai, TIAN Tao, LI Junlu, et al. Fault-fracture body characteristics and their effect on hydrocarbon distribution of Yanchang Formation in southwestern margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1): 1-12.
    [26] 李俊鹿, 刘小虎, 梁臣, 等. 断缝体油藏二元四区模型提出及应用[C]//2021油气田勘探与开发国际会议论文集(上册). 青岛: 中国石油大学(华东), 2021: 7.

    LI Junlu, LIU Xiaohu, LIANG Chen, et al. Building and application of 2-structure 4-area model for fault-fracture body reservoir[C] // 2021 International Field Exploration and Development Conference. Qingdao: China University of Petroleum (East China), 2021: 7.
    [27] 汪勇. 车排子地区石炭系火山岩裂缝成因特征及控油作用研究[D]. 青岛: 中国石油大学(华东), 2019: 22-48.

    WANG Yong. The genetic characteristics of volcanic fractures and its oil-controlling effect in carboniferous of Chepaizi area[D]. Qingdao: China University of Petroleum (East China), 2019: 22-48.
    [28] 宋明水, 吕明久, 赵乐强, 等. 准噶尔盆地车排子凸起油气资源潜力与成藏模式[J]. 中国石油勘探, 2016, 21(3): 83-91.

    SONG Mingshui, LV Mingjiu, ZHAO Leqiang, et al. Hydrocarbon potential and accumulation model in Chepaizi Uplift, Junggar Basin[J]. China Petroleum Exploration, 2016, 21(3): 83-91.
    [29] 王彦君. 准噶尔盆地多期构造控藏作用及深层油气勘探[D]. 南京: 南京大学, 2020: 18-36.

    WANG Yanjun. Controlling of multiple-phase tectonics on petroleum accumulation in the Junggar Basin: implications for deep-seated petroleum exploration[D]. Nanjing: Nanjing University, 2020: 18-36.
    [30] 董大伟. 准噶尔盆地车排子凸起断层特征及对油气成藏的控制[D]. 青岛: 中国石油大学(华东), 2015: 6-59.

    DONG Dawei. Fault characteristics of Chepaizi Uplift in Junggar Basin and its control to oil-gas accumulation[D]. Qingdao: China University of Petroleum (East China), 2015: 6-59.
    [31] LUO Qun. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324.
    [32] 罗群, 白新华. 断裂控烃理论与实践—断裂活动与油气聚集研究[M]. 武汉: 中国地质大学出版社, 1998: 89-94.

    LUO Qun, BAI Xinhua. Fault hydrocarbon control theory and oil and gas exploration practice-fault activity and oil and gas accumulation research[M]. Wuhan: China University of Geosciences Press, 1998: 89-94.
    [33] 蒋有录, 刘华. 断裂沥青带及其油气地质意义[J]. 石油学报, 2010, 31(1): 36-41.

    JIANG Youlu, LIU Hua. Fault asphalt zone and its significance in petroleum geology[J]. Acta Petrolei Sinica, 2010, 31(1): 36-41.
    [34] 范婕, 蒋有录, 张奎华, 等. 断裂带结构的识别方法及其控藏作用[J]. 地质论评, 2021, 67(S1): 89-90.

    FAN Jie, JIANG Youlu, ZHANG Kuihua, et al. The method of distinguishing fault zone structure and its control of reservoir[J]. Geological Review, 2021, 67(S1): 89-90.
    [35] 罗群, 王千军, 杨威, 等. 走滑断裂内部结构渗透差异特征及其输导控藏模式[J]. 地球科学, 2023, 48(6): 2342-2360.

    LUO Qun, WANG Qianjun, YANG Wei, et al. Internal structural units, differential characteristics of permeability and their transport, shielding and reservoir control modes of strike-slip faults[J]. Earth Science, 2023, 48(6): 2342-2360.
    [36] 宋佳佳, 孙建孟, 王敏, 等. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966.

    SONG Jiajia, SUN Jianmeng, WANG Min, et al. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5): 1956-1966.
    [37] 苏圣民, 蒋有录. 含油气盆地断裂带结构特征及其与油气运聚关系[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 32-41.

    SU Shengmin, JIANG Youlu. Fault zone structures and its relationship with hydrocarbon migration and accumulation in petroliferous basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 32-41.
    [38] 吴小奇, 任新成, 刘德志, 等. 准噶尔盆地沙湾凹陷东部原油地球化学特征和来源[J]. 石油实验地质, 2023, 45(4): 646-655. doi: 10.11781/sysydz202304646

    WU Xiaoqi, REN Xincheng, LIU Dezhi, et al. Geochemical characteristics and source of crude oil from the eastern Shawan Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 646-655. doi: 10.11781/sysydz202304646
    [39] 尹艳芳, 常象春, 徐佑德, 等. 准噶尔盆地车排子凸起中生界稠油油源分析[J]. 特种油气藏, 2024, 31(1): 39-47.

    YIN Yanfang, CHANG Xiangchun, XU Youde, et al. Mesozoic heavy oil source analysis of Chepaizi Uplift in Junggar Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 39-47.
    [40] 熊婷, 刘宇, 陈文利, 等. 准噶尔盆地沙湾凹陷西斜坡上乌尔禾组油藏成藏模式新认识[J]. 新疆石油地质, 2024, 45(2): 151-162.

    XIONG Ting, LIU Yu, CHEN Wenli, et al. New understanding of hydrocarbon accumulation model of Upper Wuerhe Formation on western slope of Shawan Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2024, 45(2): 151-162.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-09
  • 修回日期:  2025-03-05
  • 刊出日期:  2025-03-28

目录

    /

    返回文章
    返回