Characteristics and main controlling factors of fractures in gas reservoir of Xujiahe Formation, Dayi Structure
-
摘要: 大邑构造须家河组气藏为裂缝性气藏,裂缝发育程度是天然气富集高产的关键因素。通过对14口钻井岩心、测井资料分析统计,结合构造、沉积相分析及古构造应力场模拟认为,大邑构造须家河组气藏发育构造缝、层理缝及异常高压泄压缝3种成因类型裂缝。构造缝和层理缝有效性相对较好,但其总体具数量少、延伸短、宽度窄、充填程度相对较高、非均质性较强的发育特征。地层所受应力小、变形弱是构造缝发育程度相对较差的根本原因。喜马拉雅期派生羽状断裂控制了构造缝的形成和展布;发育于三角洲平原、前缘分流河道的平行层理、斜层理是层理缝形成的主要层理构造。裂缝成因类型、充填特征、后期溶蚀作用及现今地应力场共同控制了裂缝的有效性。Abstract: The gas reservoir of the Xujiahe Formation in the Dayi Structure is a fractured reservoir. The generation degree of fracture is the key factor for natural gas enrichment and high productivity. According to the core and logging data from 14 wells, combined with structural and sedimentary facies analyses as well as ancient tectonic stress field simulation, it has been concluded that 3 genetic types of fractures exist in the study area, including structural fracture, stratification fracture and abnormal pressure blowdown fracture. Structural and stratification fractures are relatively more effective; however, they are usually in smaller amount, and extend for short distance and narrow width. They are filled for higher degree and have stronger heterogeneity. Small formation stress and weak deformation are the primary causes for the poor development of structural fractures. Induced feather fractures during the Himalayan period control the formation and distribution of structural fractures. Parallel beddings and inclined beddings which develop in the distributary channels of delta plains and delta fronts are the main bedding types for stratification fracture formation. The genetic types of fractures, filling characteristics, later denudation and current ground stress field control the effectiveness of fractures.
-
Key words:
- fracture /
- main controlling factor /
- gas reservoir /
- Xujiahe Formation /
- Dayi Structure /
- western Sichuan
-
[1] 赵爽,高倩,谯述容.川西DY地区三叠系须家河组二段地震相分析与沉积相预测[J].石油地球物理勘探,2009,44(3):341-346. [2] 胡明毅,李士祥,魏国齐,等.川西前陆盆地上三叠统须家河组沉积体系及演化特征[J].石油天然气学报(江汉石油学院学报),2008,30(5):5-10. [3] 熊亮,康保平,魏力民,等.川西大邑构造须二、三段储层特征及控制因素[J].石油天然气学报(江汉石油学院学报),2010,32(6):366-369. [4] 罗啸泉,李书兵,赵锡奎.川西龙门山构造特征与油气关系[J].石油实验地质,2011,33(4):384-387. [5] 汤良杰,崔敏.中上扬子区关键构造变革期、构造变形样式与油气保存[J].石油实验地质,2011,33(1):12-16. [6] 林良彪,陈洪德,姜平,等.川西前陆盆地须家河组沉积相及岩相古地理演化[J].成都理工大学学报:自然科学版,2006,33(4):376-383. [7] 李智武,刘树根,陈洪德,等.龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报:自然科学版,2008,35(4):440-453. [8] 秦启荣,苏培东.构造裂缝类型划分与预测[J].天然气工业,2006,26(10):33-36. [9] 李嵘,张娣,朱丽霞.四川盆地川西坳陷须家河组砂岩致密化研究[J].石油实验地质,2011,33(3):274-281. [10] 姚田万,吕萍,何云峰,等.常规测井在孔-缝储层评价中的应用:以巴什托油田巴楚组油藏为例[J].石油实验地质,2012,34(S1):76-79. [11] 王二七,孟庆任.对龙门山中生代和新生代构造演化的讨论[J].中国科学:D辑:地球科学,2008,38(10):1221-1233. [12] 董绍鹏,韩竹军,尹金辉,等.龙门山山前大邑断裂活动时代与最新构造变形样式初步研究[J].地震地质,2008,30(4):996-1003.
计量
- 文章访问数: 1893
- HTML全文浏览量: 74
- PDF下载量: 1160
- 被引次数: 0