Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin
-
摘要: 基于地震剖面反射结构,分析了新生代以来柴达木盆地西部地区的构造运动学和几何学特征,结合新近系—古近系油田水储集类型和矿化度分布特征,探讨了构造演化和差异变形对柴西地区深层油田水分布的控制作用。柴西地区差异构造变形特征明显,受NW-SE向断裂控制,其中英雄岭构造带具有局部分层差异变形特征。古近系—新近系油田水化学类型、储集类型与矿化程度受控于差异构造变形和多期构造演化。喜马拉雅早期运动形成的蓄水构造和深大断裂为油田水汇聚提供了条件,晚期运动促进了储集空间的进一步形成以及油田水向构造高部位调整。咸化背景下构造裂缝发育的英雄岭和柴西北构造带是高矿化度油田水富集有利区,膏盐岩层控制英雄岭构造带深层油田水的垂向差异分布。Abstract: The impact of tectonic evolution and differential deformation on the distribution of oilfield water was discussed based on the analysis of tectonic kinematics and geometric characteristics of the western Qaidam Basin combined with the accumulation types and salinity distribution characteristics of oilfield water of the Neogene-Paleogene. The characteristics of differential structural deformation in the western Qaidam Basin are obvious. Controlled by the NW-SE oriented faults, the Yingxiongling Structural Belt features stratified deformation. The hydrochemical types, reservoir types, and salinity of oilfield water of the Neogene-Paleogene are controlled by differential tectonic deformation and multi-phase tectonic evolution. The early Himalayan Movement resulted in water storage structures and deep faults, which provided conditions for the convergence of oilfield water. The late Himalayan Movement promoted the further formation of reservoir space and the adjustment of oilfield water to high structures. The Yingxiongling and northwestern Qaidam structural belts where tectonic fractures develop in saline lacustrine sediments are the favorable areas for salinity enrichment, and the existence of gypsum-salt rock controls the vertical differential distribution of deep brine in the Yingxiongling Structural Belt.
-
Key words:
- differential deformation /
- controlling factor /
- oilfield water /
- tectonic evolution /
- Cenozoic /
- western Qaidam Basin
-
图 3 柴达木盆地西部次级构造变形特征
剖面位置见图 2a。
Figure 3. Characteristics of secondary tectonic deformation, western Qaidam Basin
图 4 柴达木盆地西部古近系—新近系油田水储集空间特征
a.泥质灰岩,南5井,3 041 m,E32;b.泥质云岩,狮41-2井,4 099.41 m,E31;c.泥质灰岩,裂缝和溶蚀孔洞发育,狮24井,3 155 m,E32;d.粉砂质泥灰岩,裂缝发育,南6井,3 087 m,E32,单偏光,×100;e.含砂钙质泥岩,裂缝发育,狮53井,4 626.03 m,E32,单偏光,×100;f.粗中粒砂岩,粒间孔发育,扎112井,3 408.23 m,E31,单偏光,×100
Figure 4. Characteristics of reservoir porosity in Neogene-Paleogene, western Qaidam Basin
表 1 柴达木盆地西部古近系—新近系不同构造带油田水分布特征
Table 1. Distribution characteristics of oilfield water in different structural belts in Neogene-Paleogene, western Qaidam Basin
构造带 构造名称 含水层位 储集类型 水型 矿化度/(g·L-1) 柴西南构造带 昆北 E1+2、E31 孔隙型 CaCl2、NaHCO3、MgCl2、Na2SO4 30.36 红柳泉 E31 孔隙型 CaCl2、Na2CO3 144.46 七个泉 E31、E32 孔隙型 CaCl2、Na2CO3 155.58 跃进 E31、N1、N21 孔隙型 CaCl2 95.14 乌南 N21、N22 孔隙型 CaCl2、NaHCO3、MgCl2、Na2SO4 54.83 英雄岭构造带 狮子沟 E31、E32、N1、N21 孔隙型、裂隙型 CaCl2、NaHCO3 312.49 油砂山 E32、N1、N21 孔隙型 CaCl2 174.62 咸水泉 N1、N21 裂隙型 CaCl2 212.38 油泉子 N21、N22 孔隙型、裂隙型 CaCl2 248.94 开特米里克 N1、N22 孔隙型、裂隙型 CaCl2 166.01 柴西北构造带 南翼山 E32、N1、N21、N22 裂隙型 CaCl2 251.09 尖顶山 N21、N22 裂隙型 CaCl2 222.18 红沟子 N21 孔隙型 CaCl2、MgCl2、Na2SO4 144.35 大风山 N21 孔隙型、裂隙型 CaCl2 152.41 -
[1] 吴颜雄, 薛建勤, 冯云发, 等. 柴西地区新构造运动特征及其对成藏影响[J]. 石油实验地质, 2013, 35(3): 243-248. doi: 10.11781/sysydz201303243WU Yanxiong, XUE Jianqin, FENG Yunfa, et al. Neotectonic movement feature and its controlling effect on accumulation in western Qaidam Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 243-248. doi: 10.11781/sysydz201303243 [2] 畅斌. 柴西地区第三系沉降与抬升差异与断裂、裂缝的关系及油气成藏特点[D]. 西安: 西北大学, 2011.CHANG Bin. Subsidence and uplift characteristics and their relationship with faults and fractures and petroleum reservoiring characteristics in Tertiary, western of Qaidam Basin[D]. Xi'an: Northwest University, 2011. [3] 方向, 江波, 张永庶. 柴达木盆地西部地区断裂构造与油气聚集[J]. 石油与天然气地质, 2006, 27(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200601013.htmFANG Xiang, JIANG Bo, ZHANG Yongshu. Faulted structure and hydrocarbon accumulation in western Qaidam Basin[J]. Oil & Gas Geology, 2006, 27(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200601013.htm [4] 邵绪鹏, 靳久强, 沈亚, 等. 柴西地区新生代构造变形时空次序及油气意义[J]. 油气地质与采收率, 2018, 25(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801003.htmSHAO Xupeng, JIN Jiuqiang, SHEN Ya, et al. Spatial and temporal order of Cenozoic structure deformation in the western Qaidam Basin and its hydrocarbon significance[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801003.htm [5] 邵绪鹏, 管树巍, 靳久强, 等. 柴西地区英雄岭构造带构造特征差异及控制因素[J]. 油气地质与采收率, 2018, 25(4): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804011.htmSHAO Xupeng, GUAN Shuwei, JIN Jiuqiang, et al. Differences in structural characteristics and control factors of Yingxiong Range structural belt in the western Qaidam Basin[J]. Petro-leum Geology and Recovery Efficiency, 2018, 25(4): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804011.htm [6] 邵绪鹏, 管树巍, 靳久强, 等. 柴西新生代构造变形时期与强度定量表征[J]. 断块油气田, 2018, 25(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802006.htmSHAO Xupeng, GUAN Shuwei, JIN Jiuqiang, et al. Quantitative characterization of Cenozoic structure deformation period and intensity of western Qaidam Basin[J]. Fault-Block Oil and Gas Field, 2018, 25(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802006.htm [7] 白亚东, 杨巍, 马峰, 等. 柴北缘冷湖七号-南八仙地区构造特征及油气勘探方向[J]. 特种油气藏, 2019, 26(1): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901013.htmBAI Yadong, YANG Wei, MA Feng, et al. Tectonic feature and oil and gas exploration direction of Lenghu 7-Nanbaxian area on north margin of Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901013.htm [8] 付锁堂, 马达德, 郭召杰, 等. 柴达木走滑叠合盆地及其控油气作用[J]. 石油勘探与开发, 2015, 42(6): 712-722. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506004.htmFU Suotang, MA Dade, GUO Zhaojie, et al. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 712-722. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506004.htm [9] 王亚东, 张涛, 迟云平, 等. 柴达木盆地西部地区新生代演化特征与青藏高原隆升[J]. 地学前缘, 2011, 18(3): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103015.htmWANG Yadong, ZHANG Tao, CHI Yunping, et al. Cenozoic uplift of the Tibetan Plateau: evidence from tectonic-sedimentary evolution of the western Qaidam Basin[J]. Earth Science Frontiers, 2011, 18(3): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103015.htm [10] 赵凡, 孙德强, 闫存凤, 等. 柴达木盆地中新生代构造演化及其与油气成藏关系[J]. 天然气地球科学, 2013, 24(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305009.htmZHAO Fan, SUN Deqiang, YAN Cunfeng, et al. Meso-Cenozoic tectonic evolution of Qaidam Basin and its relationship with oil and gas accumulation[J]. Natural Gas Geoscience, 2013, 24(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305009.htm [11] 徐凤银, 尹成明, 巩庆林, 等. 柴达木盆地中、新生代构造演化及其对油气的控制[J]. 中国石油勘探, 2006, 11(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200606001.htmXU Fengyin, YIN Chengming, GONG Qinglin, et al. Mesozoic-Cenozoic structural evolution in Qaidam Basin and its control over oil and gas[J]. China Petroleum Exploration, 2006, 11(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200606001.htm [12] FANG Xiaomin, ZHANG Weilin, MENG Qingquan, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306. [13] ZHANG Weilin, FANG Xiaomin, SONG Chunhui, et al. Late Neogene magnetostratigraphy in the western Qaidam Basin (NE Tibetan Plateau) and its constraints on active tectonic uplift and progressive evolution of growth strata[J]. Tectonophysics, 2013, 599: 107-116. [14] 马新民, 刘池洋, 罗金海, 等. 柴达木盆地上干柴沟组时代归属及代号变更建议[J]. 现代地质, 2014, 28(6): 1266-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406017.htmMA Xinmin, LIU Chiyang, LUO Jinhai, et al. Age assignment and suggestion on stratal code alteration of upper Ganchaigou Formation, Qaidam Basin[J]. Geoscience, 2014, 28(6): 1266-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406017.htm [15] 潘家伟, 李海兵, 孙知明, 等. 阿尔金断裂带新生代活动在柴达木盆地中的响应[J]. 岩石学报, 2015, 31(12): 3701-3712. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512014.htmPAN Jiawei, LI Haibing, SUN Zhiming, et al. Tectonic responses in the Qaidam Basin induced by Cenozoic activities of the Altyn Tagh Fault[J]. Acta Petrologica Sinica, 2015, 31(12): 3701-3712. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512014.htm [16] CHENG Feng, JOLIVET M, FU Suotang, et al. Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: insight from detrital zircon U-Pb geochronology and subsurface data[J]. Tectonophysics, 2016, 677-678: 261-279. [17] 肖安成, 吴磊, 李洪革, 等. 阿尔金断裂新生代活动方式及其与柴达木盆地的耦合分析[J]. 岩石学报, 2013, 29(8): 2826-2836. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308018.htmXIAO Ancheng, WU Lei, LI Hongge, et al. Tectonic processes of the Cenozoic Altyn Tagh Fault and its coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 2013, 29(8): 2826-2836. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308018.htm [18] 王胜利, 李维锋, 魏东涛, 等. 柴达木盆地中新世中期以来构造的运动学模型[J]. 南京大学学报(自然科学), 2008, 44(1): 25-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200801003.htmWANG Shengli, LI Weifeng, WEI Dongtao, et al. A kinematic model for the deformation of the Qaidam Basin since the Middle Miocene based on seismic data[J]. Journal of Nanjing University (Natural Sciences), 2008, 44(1): 25-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200801003.htm [19] 康玉柱. 柴达木盆地构造体系控油作用研究[M]. 北京: 地质出版社, 2011: 3-65.KANG Yuzhu. Study on oil control effect of tectonic system in Qaidam Basin[M]. Beijing: Geological Publishing House, 2011: 3-65. [20] 吴婵, 阎存凤, 李海兵, 等. 柴达木盆地西部新生代构造演化及其对青藏高原北部生长过程的制约[J]. 岩石学报, 2013, 29(6): 2211-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306026.htmWU Chan, YAN Cunfeng, LI Haibing, et al. Cenozoic tectonic evolution of the western Qaidam Basin and its constrain on the growth of the northern Tibetan Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2211-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306026.htm [21] 付锁堂. 柴达木盆地西部油气成藏主控因素与有利勘探方向[J]. 沉积学报, 2010, 28(2): 373-379. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002021.htmFU Suotang. Key controlling factors of oil and gas accumulation in the western Qaidam Basin and its implications for favorable exploration direction[J]. Acta Sedimentologica Sinica, 2010, 28(2): 373-379. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002021.htm [22] 管树巍, 张水昌, 张永庶, 等. 柴达木盆地西部古近系生烃凹陷的边界效应与油气聚集模式[J]. 石油学报, 2017, 38(11): 1217-1229. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201711001.htmGUAN Shuwei, ZHANG Shuichang, ZHANG Yongshu, et al. Boundary effect and hydrocarbon accumulation pattern of Paleogene hydrocarbon-generation depression in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38(11): 1217-1229. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201711001.htm [23] 尹成明, 田丽艳, 任收麦, 等. 东昆仑山北缘山前构造带的特征及其对油气成藏的意义[J]. 地质通报, 2011, 30(8): 1275-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108014.htmYIN Chengming, TIAN Liyan, REN Shoumai, et al. Structural characteristics of the northern foreland belt of East Kunlun Mountains and their significance for oil and gas accumulation[J]. Geological Bulletin of China, 2011, 30(8): 1275-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108014.htm [24] 汤良杰, 黄太柱, 金文正, 等. 叠合盆地差异构造变形与油气聚集[J]. 地学前缘, 2009, 16(4): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904003.htmTANG Liangjie, HUANG Taizhu, JIN Wenzheng, et al. Differential deformation and hydrocarbon accumulation in the superimposed basins[J]. Earth Science Frontiers, 2009, 16(4): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904003.htm [25] 张津宁, 张金功, 杨乾政, 等. 柴达木盆地西部膏盐岩发育特征与成因分析[J]. 西北大学学报(自然科学版), 2016, 46(6): 866-876. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201606016.htmZHANG Jinning, ZHANG Jingong, YANG Qianzheng, et al. Characteristics and genesis of gypsum-salt rocks in western Qaidam Basin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(6): 866-876. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201606016.htm [26] 宋光永, 夏志远, 王艳清, 等. 柴西地区渐新统膏盐岩的形成环境与发育模式[J]. 油气地质与采收率, 2018, 25(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805008.htmSONG Guangyong, XIA Zhiyuan, WANG Yanqing, et al. Forming environment and development modes of the Oligocene lacustrine gypsum-salt rock in western Qaidam Basin[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805008.htm