Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang Sag, Jianghan Basin: a case study of Paleogene Eq34-10 rhythm
-
摘要: 通过岩石薄片鉴定、扫描电镜、压汞—液氮吸附联合测定及微米CT三维重构等实验手段,对江汉盆地潜江凹陷潜江组页岩油储层的矿物组成、岩相组合、孔缝类型、孔隙结构及孔隙发育规律进行研究。盐间古近系潜江组三段4亚段10韵律页岩油储层主要岩相有纹层状泥质白云岩相、纹层状云(灰)质泥岩相和钙芒硝充填纹层状云质泥岩相;储集空间主要包括层间缝、晶间孔、晶间溶孔等。盐间页岩油储层孔隙的发育主要受岩性、岩相控制,钙芒硝充填纹层状云质泥岩相—纹层状云(灰)质泥岩相—纹层状泥质白云岩相孔隙发育程度依次增强。纹层状泥质白云岩相孔隙中宏孔最为发育,孔隙连通性最优,含油性最佳,为盐间页岩油储层中的优势岩相,是盐间页岩油最有利的勘探目标。Abstract: The mineral composition, lithofacies association, pore-fracture type, pore structure and pore development control of the Qianjiang Formation shale oil reservoir in the Qianjiang Sag of the Jianghan Basin were studied using thin section petrography, scanning electron microscopy, mercury injection-liquid nitrogen adsorption and 3D reconstruction of micro-CT. The main lithofacies of Eq34-10 rhythm (the tenth rhythm in the fourth submember of the third member of the Qiangjiang Formation) are laminated argillaceous dolomite, laminated dolomitic (calcareous) mudstone and mirabilite filled laminated dolomitic mudstone. The main reservoir porosity includes interlayer fractures, intergranular pores and intergranular solution pores. The pore development of inter-salt shale oil reservoir is mainly controlled by lithology and lithofacies, and the pore development degree of mirabilite filled laminated dolomitic mudstone, laminated dolomitic (calcareous) mudstone and laminated[JP3]argillaceous dolomite increase accordingly. Macro-pores are the most developed porosity in the laminated argillaceous dolomite facies, with the best pore connectivity and oil-bearing properties, and is the dominant lithofacies in the inter-salt shale oil reservoir and the most favorable exploration target.
-
Key words:
- reservoir characteristics /
- lithofacies association /
- inter-salt /
- shale oil /
- Qianjiang Formation /
- Qianjiang Sag /
- Jianghan Basin
-
图 1 江汉盆地潜江凹陷区域构造、沉积相及取样位置[14]
Figure 1. Regional structures, sedimentary facies and sample locations of Qianjiang Sag, Jianghan Basin
表 1 江汉盆地潜江凹陷W99井Eq34-10韵律不同岩相微米CT分析计算结果
Table 1. Micron CT analysis for different lithologies from Eq34-10 rhythm in well W99, Qianjiang Sag, Jianghan Basin
岩性 深度/m 主体孔隙直径/μm 主体喉道直径/μm 平均喉道长度/μm CT孔隙度/% 纹层状泥质白云岩相 1 676.88 100~400 1~4 8.49 13.30 纹层状灰质泥岩相 1 680.42 4~40 0.8~4 7.99 3.58 纹层状云质泥岩相 1 678.26 4~40 2~4 7.42 3.46 钙芒硝充填云质泥岩相 1 684.04 4~20 0.8~2 7.88 3.20 -
[1] GIBSON R I. Basement tectonics and hydrocarbon production in the Williston Basin: an interpretive overview[C]//7th International Williston Basin Symposium. Tulsa: AAPG, 1995: 3-11. [2] SONNENBERG S A, PRAMUDITO A. Petroleum geology of the Giant Elm Coulee Field, Williston Basin[J]. AAPG Bulletin, 2009, 93(9): 1127-1153. doi: 10.1306/05280909006 [3] ORANGI A, NAGARAJAN N R, HONARPOUR M M, et al. Unconventional shale oil and gas-condensate reservoir production, impact of rock, fluid, and hydraulic fractures[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: SPE, 2011. [4] LAFOLLETTE R, HOLCOMB W D, ARAGON J. Impact of completion system, staging, and hydraulic fracturing trends in the Bakken Formation of the eastern Williston Basin[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: SPE, 2012. [5] RASDI M F, CHU Lifu. Diagnosing fracture network pattern and flow regime aids production performance analysis in unconventional oil reservoirs[C]//SPE/EAGE European Unconventional Resources Conference and Exhibition. Vienna, Austria: SPE, 2012. [6] CENTURION S M, CADE R, LUO X L. Eagle Ford shale: hydraulic fracturing, completion, and production trends: part Ⅱ[C]//SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA: SPE, 2012. [7] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htmSONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm [8] 朱日房, 张林晔, 李政, 等. 陆相断陷盆地页岩油资源潜力评价: 以东营凹陷沙三段下亚段为例[J]. 油气地质与采收率, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htmZHU Rifang, ZHANG Linye, LI Zheng, et al. Evaluation of shale oil resource potential in continental rift basin: a case study of Lower Es3 Member in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htm [9] 余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htmYU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm [10] 李志明, 陶国亮, 黎茂稳, 等. 渤海湾盆地济阳坳陷沾化凹陷L69井古近系沙三下亚段取心段页岩油勘探有利层段[J]. 石油与天然气地质, 2019, 40(2): 236-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902004.htmLI Zhiming, TAO Guoliang, LI Maowen, et al. Favorable interval for shale oil prospecting in coring Well L69 in the Paleogene Es3L in Zhanhua Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(2): 236-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902004.htm [11] 包友书. 济阳坳陷超压和应力场对页岩油富集的影响[J]. 断块油气田, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htmBAO Youshu. Influence of overpressure and stress on shale oil enrichment in Jiyang Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm [12] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htmSUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htm [13] 吴世强, 唐小山, 杜小娟, 等. 江汉盆地潜江凹陷陆相页岩油地质特征[J]. 东华理工大学学报(自然科学版), 2013, 36(3): 282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006WU Shiqiang, TANG Xiaoshan, DU Xiaojuan, et al. Geologic characteristics of continental shale oil in the Qianjiang Depression, Jianghan Salt Lake Basin[J]. Journal of East China Institute of Technology, 2013, 36(3): 282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006 [14] 熊志勇, 吴世强, 王洋, 等. 江汉盐湖盆地盐间泥质白云岩油藏地质特征与实践[J]. 地质科技情报, 2015, 34(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htmXIONG Zhiyong, WU Shiqiang, WANG Yang, et al. Geological characteristics and practice for intersalt argillaceous dolomites reservoir in the Qianjiang Depression of Jianghan Salt Lake[J]. Geological Science and Technology Information, 2015, 34(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htm [15] 蒲秀刚, 漆智先, 郑晓玲, 等. 盐间非砂岩油藏基本石油地质特征及资源潜力[J]. 石油勘探与开发, 2002, 29(5): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200205010.htmPU Xiugang, QI Zhixian, ZHENG Xiaoling, et al. Basic petroleum geological characteristics and resource potential of inter-salt non-sandstone reservoir[J]. Petroleum Exploration and Development, 2002, 29(5): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200205010.htm [16] HOU Yuguang, WANG Furong, He Sheng, et al. Properties and shale oil potential of saline lacustrine shales in the Qianjiang Depression, Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 1173-1190. doi: 10.1016/j.marpetgeo.2017.07.008 [17] LI Maowen, CHEN Zhuoheng, CAO Tingting, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001 [18] CHEN Zhuoheng, LI Maowen, MA Xiaoxiao, et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval data: an example from the Eocene Qianjiang Formation, Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 195: 84-101. doi: 10.1016/j.coal.2018.05.010 [19] 徐崇凯, 刘池洋, 郭佩, 等. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报, 2018, 36(3): 617-629. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803017.htmXU Chongkai, LIU Chiyang, GUO Pei, et al. Geochemical characte-ristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben, Jianghan Basin, China[J]. Acta Sedimentologica Sinica, 2018, 36(3): 617-629. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803017.htm [20] 潘银华, 黎茂稳, 孙永革, 等. 江汉盆地潜江凹陷盐间云质页岩热压生排烃模拟实验研究[J]. 石油实验地质, 2018, 40(4): 551-558. doi: 10.11781/sysydz201804551PAN Yinhua, LI Maowen, SUN Yongge, et al. Thermo-compression simulation of hydrocarbon generation and expulsion of inter-salt dolomitic shale, Qianjiang Sag, Jianghan Basin[J]. Petroleum Geo-logy & Experiment, 2018, 40(4): 551-558. doi: 10.11781/sysydz201804551 [21] 王国力, 张永生, 杨玉卿, 等. 江汉盆地潜江凹陷古近系潜江组盐间非砂岩储层评价[J]. 石油实验地质, 2004, 26(5): 462-468. doi: 10.11781/sysydz200405462WANG Guoli, ZHANG Yongsheng, YANG Yuqing, et al. Evaluation of nonsandstone reservoirs between salt beds of the Paleogene Qianjiang Formation in the Qianjiang Depression of the Jianghan Basin[J]. Petroleum Geology & Experiment, 2004, 26(5): 462-468. doi: 10.11781/sysydz200405462 [22] 孙中良, 王芙蓉, 何生, 等. 潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J]. 深圳大学学报(理工版), 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htmSUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang Depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htm [23] 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htmLONG Yumei, CHEN Manfei, CHEN Fengling, et al. Characteristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htm [24] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. [25] 朱如凯, 白斌, 崔景伟, 等. 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305008.htmZHU Rukai, BAI Bin, CUI Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305008.htm [26] BRUNAUER S, DEMING L S, DEMING W E, et al. On a theory of the van der Waals adsorption of gases[J]. American Chemical Society, 1940, 62(7): 1723-1732. [27] 李志清, 沈鑫, 戚志宇, 等. 基于压汞法与气体吸附法的页岩孔隙结构特征对比研究[J]. 工程地质学报, 2017, 25(6): 1405-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201706002.htmLI Zhiqing, SHEN Xin, QI Zhiyu, et al. Comparations between mercury intrusion and gas adsorption for pore structure characteristics of shale[J]. Journal of Engineering Geology, 2017, 25(6): 1405-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201706002.htm [28] 宫伟力, 安里千, 赵海燕, 等. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. 岩土力学, 2010, 31(2): 371-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002010.htmGONG Weili, AN Liqian, ZHAO Haiyan, et al. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. Rock and Soil Mechanics, 2010, 31(2): 371-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002010.htm [29] 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201401015.htmJIAO Kun, YAO Suping, WU Hao, et al. Advances in characte-rization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201401015.htm [30] 徐祖新. 基于CT扫描图像的页岩储层非均质性研究[J]. 岩性油气藏, 2014, 26(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201406009.htmXU Zuxin. Heterogeneity of shale reservoirs based on CT images[J]. Lithologic Reservoirs, 2014, 26(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201406009.htm [31] 苑京文, 贾东, 魏东涛, 等. 基于工业CT扫描的岩芯裂缝结构表征[J]. 高校地质学报, 2016, 22(1): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201601020.htmYUAN Jingwen, JIA Dong, WEI Dongtao, et al. The characteristics of the core fracture structure based on the industrial CT scanning[J]. Geological Journal of China Universities, 2016, 22(1): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201601020.htm [32] 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453LIU Weixin, BAO Fang, YU Lingjie, et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Experiment, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453 [33] 孙健, 包汉勇. 页岩气储层综合表征技术研究进展: 以涪陵页岩气田为例[J]. 石油实验地质, 2018, 40(1): 1-12. doi: 10.11781/sysydz201801001SUN Jian, BAO Hanyong. Comprehensive characterization of shale gas reservoirs: a case study from Fuling shale gas field[J]. Petro-leum Geology & Experiment, 2018, 40(1): 1-12. doi: 10.11781/sysydz201801001 [34] 雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htmLEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htm [35] LOPATIN N V, ZUBAIRAEV S L, KOS I M, et al. Unconventional oil accumulations in the Upper Jurassic Bazhenov Black Shale formation, West Siberian Basin: a self-sourced reservoir system[J]. Journal of Petroleum Geology, 2003, 26(2): 225-244. [36] JARVIE D M. Shale resource systems for oil and gas: part 2-shale-oil resource systems[M]//BREYER J A. Shale reservoirs-Giant resources for the 21st century. Texas: AAPG, 2012: 89-119. [37] 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htmLU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm [38] 宋国奇, 张林晔, 卢双舫, 等. 页岩油资源评价技术方法及其应用[J]. 地学前缘, 2013, 20(4): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304021.htmSONG Guoqi, ZHANG Linye, LU Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304021.htm [39] 王民, 石蕾, 王文广, 等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014, 26(3): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201403013.htmWANG Min, SHI Lei, WANG Wenguang, et al. Comparative study on geochemical characteristics of shale oil between China and U.S. A[J]. Lithologic Reservoirs, 2014, 26(3): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201403013.htm [40] 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数: 含油率的校正[J]. 石油与天然气地质2016, 37(1): 15-22.XUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content: one key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1): 15-22.