Heat-flow value of Late Mesozoic to Cenozoic in Putumayo Sub-Basin, Republic of Colombia
-
摘要: 普图马约次盆地经历了多期构造演化,其大地热流史也经历了长期、复杂的演化过程。利用地质背景约束、古温标正演约束等多种方法,系统地确定了普图马约次盆自白垩纪以来各时期的大地热流值:白垩纪大地热流值为64 mW/m2;古新世大地热流值为95 mW/m2;渐新世末期大地热流值为38 mW/m2;上新世大地热流值处于120~190.00 mW/m2之间,平均155.00 mW/m2,且具有由东到西大地热流值增加的特征;今大地热流值为55 mW/m2。Abstract: The heat-flow history of the Putumayo Sub-Basin has undergone a long-term and complex evolutionary process from the Late Mesozoic to the Cenozoic due to multiphases of tectonic evolution. The regional geologic background and the forward modeling of paleo-temperature were applied to determine the heat-flow value during different stages ever since the Cretaceous. The heat-flow value was 64 mW/m2 in the Cretaceous, 95 mW/m2 in the Paleocene, 38 mW/m2 at the end of Oligocene, 120 to 190 mW/m2 (increasing from east to west and averaging 155 mW/m2) in the Pliocene, and 55 mW/m2 at present.
-
Key words:
- Late Mesozoic /
- Cenozoic /
- heat flow /
- Putumayo Sub-Basin /
- Republic of Colombia
-
表 1 普图马约次盆实测今温度与深度数据表
Table 1. Measured temperature and depth data of Putumayo Sub-Basin
序号 深度/m 温度/℃ 1 496.04 48.89 2 1 036.59 90.00 3 1 649.39 71.11 4 2 074.39 88.89 5 2 185.67 80.00 6 2 279.57 80.00 7 2 314.63 92.78 8 2 515.55 93.89 9 2 570.73 93.89 10 2 572.56 86.67 11 2 606.71 87.22 12 2 620.73 97.22 13 2 643.60 93.89 14 2 655.79 88.33 15 2 670.73 90.00 16 2 697.56 90.56 -
[1] 郝春艳, 刘绍文, 王华玉, 等. 全球大地热流研究进展[J]. 地质科学, 2014, 49(3): 754-770. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403005.htmHAO Chunyan, LIU Shaowen, WANG Huayu, et al. Global heat flow: an overview over past 20 years[J]. Chinese Journal of Geology, 2014, 49(3): 754-770. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403005.htm [2] 李宗星, 高俊, 郑策, 等. 柴达木盆地现今大地热流与晚古生代以来构造-热演化[J]. 地球物理学报, 2015, 58(10): 3687-3705. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510021.htmLI Zongxing, GAO Jun, ZHENG Ce, et al. Present-day heat flow and tectonic-thermal evolution since the Late Paleozoic time of the Qaidam Basin[J]. Chinese Journal of Geophysics, 2015, 58(10): 3687-3705. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510021.htm [3] 宋颖睿, 侯宇光, 刘宇坤, 等. 黔南坳陷下石炭统摆佐组暗色页岩热演化与生烃史研究[J]. 石油实验地质, 2018, 40(2): 226-232. doi: 10.11781/sysydz201802226SONG Yingrui, HOU Yuguang, LIU Yukun, et al. Thermal evolution and hydrocarbon generation histories of black shale in Lower Carboniferous Baizuo Formation, Southern Guizhou Depression[J]. Petroleum Geology & Experiment, 2018, 40(2): 226-232. doi: 10.11781/sysydz201802226 [4] 马中振, 陈和平, 谢寅符, 等. 南美Putomayo-Oriente-Maranon盆地成藏组合划分与资源潜力评价[J]. 石油勘探与开发, 2017, 44(2): 225-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201702008.htmMA Zhongzhen, CHEN Heping, XIE Yinfu, et al. Division and resources evaluation of hydrocarbon plays in Putomayo-Oriente-Maranon Basin, South America[J]. Petroleum Exploration and Development, 2017, 44(2): 225-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201702008.htm [5] 刘静静, 邬长武, 丁峰. 南大西洋两岸含盐盆地类型与油气分布规律[J]. 石油实验地质, 2018, 40(3): 372-380. doi: 10.11781/sysydz201803372LIU Jingjing, WU Changwu, DING Feng. Basin types and hydrocarbon distribution in salt basins in the South Atlantic[J]. Petroleum Geology & Experiment, 2018, 40(3): 372-380. doi: 10.11781/sysydz201803372 [6] GONÇALVES F T T, MORA C A, CÓRDOBA F, et al. Petroleum generation and migration in the Putumayo Basin, Colombia: insights from an organic geochemistry and basin modeling study in the foothills[J]. Marine and Petroleum Geology, 2002, 19(6): 711-725. doi: 10.1016/S0264-8172(02)00034-X [7] 任怀建, 杨振武, 卢小新, 等. 普图马约盆地Neme段特稠油储层含油饱和度评价方法[J]. 新疆石油天然气, 2017, 13(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201702002.htmREN Huaijian, YANG Zhenwu, LU Xiaoxin, et al. Oil saturation evaluation method of Neme extremely viscous crude reservoir in Putumayo Basin[J]. Xinjiang Oil & Gas, 2017, 13(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201702002.htm [8] 雷晓东, 胡圣标, 李娟, 等. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 2018, 61(9): 3735-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htmLEI Xiaodong, HU Shengbiao, LI Juan, et al. Characteristics of heat flow and geothermal distribution in the northwest Beijing Plain[J]. Chinese Journal of Geophysics, 2018, 61(9): 3735-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htm [9] 张富有. 南阳盆地地温梯度与大地热流值特征[J]. 地下水, 2016, 38(4): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201604001.htmZHANG Fuyou. Geothermal gradient and heat flow characteristics of Nanyang Basin[J]. Groundwater, 2016, 38(4): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201604001.htm [10] 汪集旸, 汪缉安. 辽河裂谷盆地地幔热流[J]. 地球物理学报, 1986, 29(5): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198605003.htmWANG Jiyang, WANG Ji'an. Mantle heat flow of Liaohe Rifted Basin in North China[J]. Acta Geophysica Sinca, 1986, 29(5): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198605003.htm [11] 刘绍文, 王良书, 李成, 等. 塔里木盆地岩石圈热-流变学结构和新生代热体制[J]. 地质学报, 2006, 80(3): 344-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603005.htmLIU Shaowen, WANG Liangshu, LI Cheng, et al. Ithospheric thermo-rheological structure and Cenozoic thermal regime in the Tarim Basin, Northwest China[J]. Acta Geologica Sinica, 2006, 80(3): 344-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603005.htm [12] 陈增智, 柳广弟, 郝石生. 多构造期古老盆地古热流史模型及其应用[J]. 石油大学学报(自然科学版), 1999, 23(1): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX901.004.htmCHEN Zengzhi, LIU Guangdi, HAO Shisheng. Development and application of a model for geothermal history of sedimentary basin with multi-tectonic events[J]. Journal of the University of Petroleum, China, 1999, 23(1): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX901.004.htm [13] 刘进. 盆地基底古热流求取方法[J]. 大庆石油地质与开发, 2006, 25(6): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200606004.htmLIU Jin. Basin basement palaeo-heat flow calculation method[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(6): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200606004.htm [14] 庞雄奇, 陈章明, 陈发景. 非线性变化古热流回剥模拟计算方法探讨[J]. 大庆石油学院学报, 1994, 18(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY402.001.htmPANG Xiongqi, CHEN Zhangming, CHEN Fajing. An approach to modelling nonlinear change paleoheat flux by backstripping[J]. Journal of Daqing Petroleum Institute, 1994, 18(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY402.001.htm [15] 周中毅, 潘长春. 沉积盆地古地温测定方法及其应用[M]. 广州: 广东科技出版社, 1992.ZHOU Zhongyi, PAN Changchun. Paleotemperature analysis methods and their application in sedimentary basins[M]. Guangzhou: Guangdong Science & Technology Press, 1992. [16] 施小斌, 汪集旸, 罗晓容. 古温标重建沉积盆地热史的能力探讨[J]. 地球物理学报, 2000, 43(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200003011.htmSHI Xiaobin, WANG Jiyang, LUO Xiaorong. Discussion on the abilities of thermal indicators in reconstructing thermal history of sedimentary basin[J]. Chinese Journal of Geophysics, 2000, 43(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200003011.htm [17] CHIARADIA M, MVNTENER O, BEATE B. Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of Ecuador)[J]. Journal of Petrology, 2011, 52(6): 1107-1141. [18] BEST M G. Igneous and metamorphic petrology[M]. 2nd ed. Malden, MA: Blackwell Publishing, 2003: 278-280. [19] 崔景伟, 侯连华, 朱如凯, 等. 鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J]. 石油实验地质, 2019, 41(2): 280-288. doi: 10.11781/sysydz201902280CUI Jingwei, HOU Lianhua, ZHU Rukai, et al. Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development[J]. Petroleum Geology & Experiment, 2019, 41(2): 280-288. doi: 10.11781/sysydz201902280 [20] 程超, 林海宇, 蒋裕强, 等. 川南龙马溪组含气页岩热导率实验研究[J]. 石油实验地质, 2019, 41(2): 289-294. doi: 10.11781/sysydz201902289CHENG Chao, LIN Haiyu, JIANG Yuqiang, et al. Thermal conductivity of gas-bearing shale of the Longmaxi Formation in the southern Sichuan[J]. Petroleum Geology & Experiment, 2019, 41(2): 289-294. doi: 10.11781/sysydz201902289 [21] 吴群, 彭金宁. 川东北地区埋藏史及热史分析: 以普光2井为例[J]. 石油实验地质, 2013, 35(2): 133-138. doi: 10.11781/sysydz201302133WU Qun, PENG Jinning. Burial and thermal histories of northeastern Sichuan Basin: a case study of well Puguang 2[J]. Petroleum Geology & Experiment, 2013, 35(2): 133-138. doi: 10.11781/sysydz201302133 [22] 赵军, 曹强, 付宪弟, 等. 基于米兰科维奇天文旋回恢复地层剥蚀厚度: 以松辽盆地X油田青山口组为例[J]. 石油实验地质, 2018, 40(2): 260-267. doi: 10.11781/sysydz201802260ZHAO Jun, CAO Qiang, FU Xiandi, et al. Recovery of denuded strata thickness based on Milankovitch Astronomical Cycles: a case study of Qingshankou Formation in X Oilfield, Songliao Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 260-267. doi: 10.11781/sysydz201802260 [23] FRIEDMAN G M, SANDERS J E. Principles of sedimentology[M]. New York: Wiley, 1978. [24] 彭金宁, 罗开平, 刘光祥, 等. 四川盆地热演化异常成因及热场演化特征分析[J]. 石油实验地质, 2018, 40(5): 605-612. doi: 10.11781/sysydz201805605PENG Jinning, LUO Kaiping, LIU Guangxiang, et al. Causes of abnormal thermal evolution and characteristics of thermal evolution in Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(5): 605-612. doi: 10.11781/sysydz201805605 [25] 冯禄, 曾花森, 王洪伟. 岩浆侵入作用对不同成熟度烃源岩热演化的影响: 以方正断陷和绥滨坳陷为例[J]. 石油实验地质, 2018, 40(5): 724-729. doi: 10.11781/sysydz201805724FENG Lu, ZENG Huasen, WANG Hongwei. Impact of igneous intrusion on the thermal evolution of source rocks with different maturities: a case study of Fangzheng Fault Depression and Suibin Sag in north-eastern China[J]. Petroleum Geology & Experiment, 2018, 40(5): 724-729. doi: 10.11781/sysydz201805724 [26] ALLEN P A, ALLEN J R. Basin analysis: principles and application[M]. Oxford, England: Blackwell Scientific Publications, 1990: 282-283. [27] BRAD D W, JAMES C C, BRIAN K H, et al. Structural and hydrogeologic evolution of the Putumayo Basin and adjacent fold-thrust belt, Colombia[J]. AAPG Bulletin, 2015, 99(10): 1893-1927. [28] 巫建华, 刘帅. 大地构造学概论与中国大地构造学纲要[M]. 北京: 地质出版社, 2008.WU Jianhua, LIU Shuai. Introduction to tectonics and tectonics outline in China[M]. Beijing: Geological Publishing House, 2008. [29] POLLACK H N, HUNTER S J, JOHNSON J R. Heat flow from the Earth's interior: analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280. [30] STOREY B C. The role of mantle plumes in continental breakup: case histories from Gondwanaland[J]. Nature, 1995, 377(6547): 301-308. [31] CONDIE K C. Mantle plumes and their record in earth history[M]. Cambridge: Cambridge University Press, 2001: 306. [32] MCCOURT W J, ASPDEN J A, BROOK M. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion[J]. Journal of the Geological Society, 1984, 141(5): 831-845.