Oil and gas sources in Shunbei Oilfield, Tarim Basin
-
摘要: 基于塔里木盆地顺北地区原油和天然气样品的地球化学特征分析,研究了顺北地区奥陶系中下统油气来源。通过饱和烃色谱及饱和烃、芳烃色谱-质谱、全油及族组分碳同位素检测,发现原油样品中C23三环萜烷占优势,伽马蜡烷含量低,C27-C28-C29ααα20R规则甾烷表现为不规则的“V”字形分布,规则甾烷相对重排甾烷含量高,原油碳同位素偏轻,与柯坪露头及孔探1井等下寒武统烃源岩有很好的亲缘性;天然气δ13C1值为-50.7‰~-44.7‰,天然气δ13C2值为-36.1‰~-33.1‰,干燥系数为0.520~0.883,为原油伴生气,油气同源,判断顺北油田油气主要来源于下寒武统烃源岩。通过已钻井岩相、沉积相和全盆地地震相资料,预测下寒武统烃源岩在塔里木盆地广泛分布,厚度在30 m左右,有机碳含量高,生烃潜力大,具有长期生烃、多期供烃的特点,能提供充足的油气资源,是塔里木盆地台盆区最主要的烃源岩。Abstract: The hydrocarbon sources in the Middle and Lower Ordovician in the Shunbei area of the Tarim Basin were studied based on the geochemical characteristics of oil and gas samples. The saturated hydrocarbon gas chromatography, mass spectrometry of crude oil and natural gas, and the carbon isotope distribution of whole oil and group components were used. The C23 tricyclic terpane is dominant in crude oil samples from the Shunbei area, with a low content of gammacerane. The C27-C28-C29ααα20R regular steranes show an irregular "V" shape distribution. The regular steranes account for a larger amount than the rearranged steranes, and the carbon isotope of the crude oils is light. The geochemical characteristics of crude oil samples from the Middle and Lower Ordovician in the Shunbei area have a good affinity with those from the Lower Cambrian in the Keping outcrop and the well KT1. The δ13C1 and δ13C2 values of natural gas samples are -50.7‰ to -44.7‰ and -36.1‰ to -33.1‰, respectively. The gas dryness coefficient ranges from 0.520 to 0.883. The oil and natural gas in the Shunbei Oilfield have the same source, that is, the Lower Cambrian source rocks. The distribution of source rocks in the Lower Cambrian of the Tarim Basin was predicted by means of drilled lithofacies, sedimentary facies and seismic facies of the whole basin. The source rocks are about 30 m thick. They have a high TOC content and show a great hydrocarbon generation potential. They have experienced a long term of hydrocarbon generation and multiple stages of hydrocarbon supply, providing significant oil and gas resources for the Tarim Basin.
-
Key words:
- oil-source correlation /
- oil and gas source /
- main source rock /
- Ordovician /
- Shunbei area /
- Tarim Basin
-
图 3 塔里木盆地下寒武统烃源岩发育模式[19]
Figure 3. Development model of Lower Cambrian source rocks in Tarim Basin
图 4 塔里木盆地下寒武统沉积相及烃源岩厚度预测[19]
Figure 4. Prediction of sedimentary facies and source rock thickness of Lower Cambrian, Tarim Basin
表 1 塔里木盆地顺北地区原油性质
Table 1. Nature of crude oil in Shunbei area of Tarim Basin
断裂带 井号 层位 深度/m 原油密度(20 ℃)/(g·cm-3) 黏度(50 ℃)/(mP·s) 凝固点/℃ 含硫量/% 含蜡量/% 斜深 垂深 1号带北段 SHB1-3 中奥陶统 7 255.70~7 389.50 7 255.70~7 357.89 0.795 5 2.52 -20 0.103 8.23 SHB1-6H 中奥陶统 7 288.16~7 789.07 7 288.16~7 399.75 0.789 3 2.16 -16 0.104 2.84 SHB1-1H 中奥陶统 7 458.00~7 613.05 7 458.00~7 557.66 0.795 5 3.11 -4 0.120 2.82 SHB1-4H 中奥陶统 7 459.00~8 049.50 7 459.00~7 561.96 0.796 9 2.88 -14 0.133 5.29 SHB1-2H 中奥陶统 7 469.00~7 778.11 7 469.00~7 569.47 0.808 8 3.28 -14 0.109 2.28 1号带南段 SHB1-11H 中奥陶统 7 572.00~7 732.17 7 572.00~7 732.17 0.793 4 2.56 -34 0.106 4.58 SHB1-15H 中下奥陶统 7 614.00~8 010.00 7 614.00~8 007.13 0.793 8 2.52 -24 0.115 3.94 5号带 SHB5 中下奥陶统 7 315.00~7 950.06 7 315.00~7 650.64 0.829 6 4.37 ﹤-34 0.198 4.38 SHB5-2 中奥陶统 7 460.33~7 527.16 7 460.33~7 527.16 0.823 4 5.18 -24 0.195 1.05 SHB51X 中奥陶统 7 556.00~7 876.00 7 556.00~7 683.64 0.802 4 3.66 -14 0.094 4.24 SHB5-6 中下奥陶统 7 518.00~8 026.00 7 518.00~7 942.65 0.809 8 5.38 -10 0.093 7号带 SHB7 中下奥陶统 7 568.46~8 121.00 7 568.46~7 863.66 0.859 1 18.72 -16 0.159 3.65 表 2 塔里木盆地顺北地区天然气烃类组成
Table 2. Hydrocarbon composition of natural gas in Shunbei area, Tarim Basin
断裂带 井号 层位 天然气相对密度 烃类组分含量/% 干燥系数/% 非烃类组分含量/% 天然气类型 甲烷 乙烷 丙烷以上 N2 CO2 1号带北段 SHB1-3 中奥陶统 0.68 83.37 6.63 5.32 87.62 2.40 2.27 湿气 SHB1-6H 中奥陶统 0.68 83.61 6.63 4.54 88.33 2.66 2.56 SHB1-1H 中奥陶统 0.70 81.14 7.55 5.99 85.83 2.88 2.43 SHB1-4H 中奥陶统 0.71 78.60 8.98 6.18 83.94 4.12 2.14 SHB1-2H 中奥陶统 0.72 78.32 8.52 6.78 83.81 4.28 2.10 1号带南段 SHB1-11H 中奥陶统 0.75 74.67 9.76 8.67 80.40 4.83 2.08 SHB1-15H 中下奥陶统 0.77 71.99 10.46 8.60 79.23 4.75 4.19 5号带 SHB5 中下奥陶统 0.91 48.90 17.58 14.88 60.29 15.17 3.48 SHB5-2 中奥陶统 0.89 52.78 17.04 14.36 62.88 12.93 2.81 SHB51X 中奥陶统 0.75 73.51 9.51 7.63 81.28 6.27 2.55 SHB5-6 中下奥陶统 0.74 73.21 9.88 7.31 81.17 8.19 1.40 7号带 SHB7 中下奥陶统 1.00 42.54 19.37 20.22 52.03 11.02 5.48 表 3 塔里木盆地顺北地区奥陶系原油与下寒武统烃源岩生标参数对比
Table 3. Biomarkers of Ordovician crude oil and Lower Cambrian source rocks in Shunbei area, Tarim Basin
采样点 样品 层位 三类规则甾烷相对含量/% Ts/(Ts+Tm) 重排甾烷/规则甾烷 C21/C23三环萜烷 G/C30藿烷 C27ααα20R C28ααα20R C29ααα20R 顺北1井 原油 O2yj 33 15 52 0.780 0.410 0.520 - 顺北1-4井 原油 O2yj 35 28 38 0.475 0.456 0.515 - 顺北5井 原油 O2yj+O1-2y 33 15 52 0.497 0.416 0.540 - 顺北7井 原油 O2yj+O1-2y 25 15 60 0.657 0.510 0.640 0.118 苏盖特布拉克剖面 泥岩 $ \mathrm{{\rlap{-} C }} $1y 35 30 36 0.440 0.170 0.790 0.295 孔探1井 泥岩 $ \mathrm{{\rlap{-} C }} $1xs 36 30 34 0.380 0.110 0.560 0.380 -
[1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [2] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htmQI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm [3] 翟晓先, 顾忆, 钱一雄, 等. 塔里木盆地塔深1井寒武系油气地球化学特征[J]. 石油实验地质, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329ZHAI Xiaoxian, GU Yi, QIAN Yixiong, et al. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim Basin[J]. Petroleum Geology & Experiment, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329 [4] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [5] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htmWANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htm [6] 李政, 徐兴友, 宋来亮, 等. 伊朗卡山区块原油地球化学特征[J]. 石油勘探与开发, 2005, 32(5): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505029.htmLI Zheng, XU Xingyou, SONG Lailiang, et al. Oil geochemical characteristics in the Kashan block, Iran[J]. Petroleum Exploration and Development, 2005, 32(5): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505029.htm [7] K.E. 彼得斯, C.C. 沃尔特斯, J.M. 莫尔多万. 生物标记化合物指南: 古代沉积物和石油中分子化石的解释[M]. 姜乃煌, 译. 北京: 石油工业出版社, 1995.PETERS K E, WALTERS C C, MOLODOWAN. The biomarker guide[M]. JIANG Naihuang, trans. Beijing: Petroleum Industry Press, 1995. [8] K.E. 彼得斯, C.C. 沃尔特斯, J.M. 莫尔多万. 生物标志化合物指南下册[M]. 2版. 张水昌, 李振西, 译. 北京: 石油工业出版社, 2011.PETERS K E, WALTERS C C, MOLODOWAN J M. The biomarker guide[M]. 2nd ed. ZHANG Shuichang, LI Zhenxi, trans. Beijing: Petroleum Industry Press, 2011. [9] 侯读杰, 张林晔. 实用油气地球化学图鉴[M]. 北京: 石油工业出版社, 2003.HOU Dujie, ZHANG Linye. Practical geochemical atlas[M]. Beijing: Petroleum Industry Press, 2003. [10] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1993Z1000.htmDAI Jinxing. Characteristics of carbon and hydrogen isotopes of natural gas and its identification[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1993Z1000.htm [11] 杨瑞东, 张传林, 罗新荣, 等. 新疆库鲁克塔格地区早寒武世硅质岩地球化学特征及其意义[J]. 地质学报, 2006, 80(4): 598-605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200604026.htmYANG Ruidong, ZHANG Chuanlin, LUO Xingrong, et al. Geochemical characteristics of early Cambrian cherts in Quruqtagh, Xinjiang, West China[J]. Acta Geologica Sinica, 2006, 80(4): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200604026.htm [12] 杨鑫, 徐旭辉, 陈强路, 等. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htmYANG Xin, XU Xuhui, CHEN Qianglu, et al. Palaeotectonics pattern in Pre-Cambrian and its control on the deposition of the Lower Cambrian source rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htm [13] HALLAM A. Palaeobiogeography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1978, 24(4): 367-368. [14] 贾承造, 魏国齐, 姚慧君, 等. 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社, 1995: 1-50.JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Tectonic evolution and regional structural geology[M]. Beijing: Petroleum Industry Press, 1995: 1-50. [15] 高志前, 樊太亮, 焦志峰, 等. 塔里木盆地寒武-奥陶系碳酸盐岩台地样式及其沉积响应特征[J]. 沉积学报, 2006, 24(1): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200601002.htmGAO Zhiqian, FAN Tailiang, JIAO Zhifeng, et al. The structural types and depositional characteristics of carbonate platform in the Cambrian-Ordovician of Tarim Basin[J]. Acta Sedimentologica Sinica, 2006, 24(1): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200601002.htm [16] 赵宗举, 罗家洪, 张运波, 等. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 2011, 32(6): 937-948. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106004.htmZHAO Zongju, LUO Jiahong, ZHANG Yunbo, et al. Lithofacies paleogeography of Cambrian sequences in the Tarim basin[J]. Acta Petrolei Sinica, 2011, 32(6): 937-948. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106004.htm [17] 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htmPAN Wenqing, CHEN Yongquan, XIONG Yixue, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htm [18] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htmZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm [19] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001 [20] 顾忆, 万旸璐, 黄继文, 等. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157GU Yi, WANG Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157