Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin
-
摘要: 塔里木盆地白垩系含油层系具有良好的勘探潜力,顺北地区在白垩系有较好的油气显示,测试获得少量原油。为研究顺北地区白垩系原油地球化学特征、成因类型、油气来源,系统开展了地球化学特征分析、油—油、油—源对比研究。顺北地区白垩系原油饱和烃色谱为单峰前峰型,正构烷烃系列保存完整,谱图基线平稳,未见明显的“鼓包”,原油Pr/Ph分布在1.65~1.71,C21TT/C23TT>1,生标图谱中藿烷系列化合物占明显优势,∑三环萜烷/∑藿烷 < 1,检测到丰度较高的伽马蜡烷和三芳甾烷化合物,指示为保存条件良好的陆相成因类型原油;顺北白垩系原油与北部库车坳陷周缘的英买、大宛齐、大涝坝白垩系原油、库车河三叠系黄山街组泥质烃源岩具有较好的亲源性,指示油源来自库车坳陷三叠系黄山街组泥质烃源岩;白垩系原油热演化程度从大宛齐到英买再到顺北呈现出降低的趋势,推测顺北白垩系原油可能来源于库车坳陷三叠系烃源岩,生成的早期陆相油气沿白垩系优质砂体、T40不整合面、断裂由北向南远距离侧向运移。Abstract: The Cretaceous oil-bearing strata in the Tarim Basin have a good exploration potential. The Shunbei area has good oil and gas shows in the Cretaceous, and a small amount of crude oil has been obtained by testing. The geochemical characteristics of the Cretaceous crude oil as well as the oil-oil and oil-source correlations were studied systematically in order to determine the genesis types and sources of crude oil in the Shunbei area. The saturated hydrocarbon chromatogram of the Cretaceous crude oil in the Shunbei area shows a unimodal distribution. The n-alkanes are intact and the distribution is unchanged without any obvious "UCM". The Pr/Ph values of crude oil range 1.65-1.71. The C21TT/C23TT ratio is >1. In biomarkers, the hopane series are dominant and the ∑tricyclic terpanes/∑hopanes ratio is < 1. The gammacerane and triaryl stanine compounds are abundant, indicating that the crude oil of continental origin is well preserved. The Cretaceous crude oil in the Shunbei area and the Yingmai, Dawanqi and Dalaoba areas around the Kuqa Sag in the north, and the Triassic Huangshanjie mudstones in the Kuqa River area show similar m/z 191 biomarker patterns, which indicates that the crude oil was sourced from the Huangshanjie mudstones in the Kuqa Sag. The thermal evolution degrees of crude oil decrease from Dawanqi, Yingmai to Shunbei. We inferred that the early terrestrial hydrocarbon was sourced in the Triassic source rocks in the Kuqa Sag, and then migrated laterally from north to south through the Cretaceous sand bodies, the T40 unconformity surface and the faults.
-
Key words:
- terrestrial crude oil /
- oil source /
- accumulation model /
- Cretaceous /
- Shunbei area /
- Tarim Basin
-
表 1 塔里木盆地顺北及周缘地区白垩系、奥陶系原油性质统计
Table 1. Statistics of Cretaceous and Ordovician crude oil in Shunbei and adjacent areas, Tarim Basin
位置 井号 类型 层位 井段/m 密度/(g·cm-3) 族组分 全油同位素/‰ 饱和烃/% 芳香烃/% 非烃/% 沥青质/% 饱芳比 顺北油田 SHBP2H 油砂 K1s 3 805~3 826 72.77 16.31 4.77 6.15 4 -31.0 SHB1 原油 O 7 270~7 320 0.83 71.93 18.47 7.29 2.31 4 -32.5 SHB5 原油 O 7 314~7 651 0.83 80.05 7.35 2.89 9.71 11 -32.1 SHB51X 原油 O 7 554~7 876 0.80 73.39 8.63 17.18 0.80 9 -32.6 SHB53X 原油 O 7 740~8 362 0.80 82.07 11.75 3.03 3.15 7 塔河油田 T759-1 原油 K1kp 4 040~4 045 0.75 96.12 3.88 0 0 24.8 -31.8 TK929H 原油 K1s 4 138~4 143 72.52 17.57 6.01 3.89 4 -30.2 TP28XCX 原油 K1s 0.77 96.61 3.10 0.26 0.03 31 -31.8 KZ5-1 原油 K1s 4 045~4 160 0.82 74.50 16.58 5.99 2.93 4 -31.0 GK6 原油 K1s 3 745~3 751 0.82 72.77 16.31 4.77 6.15 4 -29.7 英买 YM9 原油 K1bs 4 945~4 956 0.84 -31.2 表 2 塔里木盆地顺北地区及周缘白垩系、奥陶系原油地化指标对比
Table 2. Geochemical biomarkers of Cretaceous and Ordovician crude oils in Shunbei and adjacent areas, Tarim Basin
位置 井位 层位 类型 Pr/Ph 规则甾烷含量/% d e f g/% h/% 类型 a b c 顺北油田 SHB5-1X K1s 原油 1.65 23.0 17.0 60.0 1.27 10.0 0.1 2.8 1.9 陆相 SHBP2H K1s 油砂 1.71 32.5 23.3 44.2 1.33 9.1 0.1 5.0 2.6 陆相 SHB5-1X O 原油 0.97 27.8 12.2 60.0 0.53 2.5 4.0 0 0 海相 SHB1 O 原油 0.96 33.2 15.3 51.6 0.53 2.0 7.7 0 0 海相 SHB5 O 原油 0.98 33.4 14.6 52.0 0.54 2.4 3.2 0 0 海相 英买 YM9 K 原油 2.20 30.0 23.0 47.0 >1 < 1 10.7 陆相 塔河油田 T759-1 K1s 原油 1.33 27.4 14.6 58.0 0.58 5.3 1.1 0 0.3 海相为主,混少量陆相原油 TP28XCX K1s 原油 1.24 32.6 20.8 46.6 0.59 15.6 1.9 0.5 0.6 海相为主,混少量陆相原油 注:a, b, c分别为aaaC27-20R、aaaC28-20R、aaaC29-20R规则甾烷;d.C21TT/C23TT;e.∑萜烷/∑甾烷;f.∑三环萜烷/∑霍烷;g.伽马蜡烷含量;h.三芳甾烷含量 -
[1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [2] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htmJIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm [3] 吕海涛, 耿锋, 毛庆言, 等. 塔里木盆地阿瓦提北-顺托果勒北地区有利勘探方向分析[J]. 石油实验地质, 2012, 34(1): 8-13. doi: 10.11781/sysydz201201008LÜ Haitao, GENG Feng, MAO Qingyan, et al. Favorable exploration targets in northern Avat and northern Shuntuoguole areas, Tarim Basin[J]. Petroleum Geology & Experiment, 2012, 34(1): 8-13. doi: 10.11781/sysydz201201008 [4] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htmYUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm [5] 罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849LUO Mingxia, XIA Yongtao, SHAO Xiaoming, et al. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849 [6] 崔景伟, 王铁冠, 李美俊, 等. 塔河油田白垩系原油地化特征与成因类型[J]. 中国矿业大学学报, 2011, 40(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201103018.htmCUI Jingwei, WANG Tieguan, LI Meijun, et al. Geochemical characteristics and genetic types of Cretaceous oils, Tahe oilfield[J]. Journal of China University of Mining & Technology, 2011, 40(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201103018.htm [7] 张斌. 塔里木盆地库车坳陷典型油气藏成因机制与分布规律[D]. 北京: 中国地质大学(北京), 2012.ZHANG Bin. Petroleum accumulation system formation and occurrence in the Kuqa Depression, Tarim Basin[D]. Beijing: China University of Geosciences (Beijing), 2012. [8] 顾忆. 塔里木盆地北部塔河油田油气藏成藏机制[J]. 石油实验地质, 2000, 22(4): 307-312. doi: 10.11781/sysydz200004307GU Yi. Forming mechanism of hydrocarbon pools in Tahe oilfield of the northern Tarim Basin[J]. Experimental Petroleum Geology, 2000, 22(4): 307-312. doi: 10.11781/sysydz200004307 [9] 顾忆, 黄继文, 邵志兵. 塔河油田奥陶系油气地球化学特征与油气运移[J]. 石油实验地质, 2003, 16(2): 746-750. doi: 10.11781/sysydz200306746GU Yi, HUANG Jiwen, SHAO Zhibing. Petroleum geochemistry and hydrocarbon migration in Tahe oilfield of the Tarim Basin[J]. Petroleum Geology & Experiment, 2003, 16(2): 746-750. doi: 10.11781/sysydz200306746 [10] 李景贵, 刘文汇, 郑建京, 等. 库车坳陷陆相烃源岩及原油中的氧芴系列化合物[J]. 石油学报, 2004, 25(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401007.htmLI Jinggui, LIU Wenhui, ZHENG Jianjing, et al. Dibenzofuran series of terrestrial source rocks and crude oils in Kuqa Depression[J]. Acta Petrolei Sinica, 2004, 25(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401007.htm [11] 程斌, 王铁冠, 常象春. C5-C7轻烃在原油地球化学研究中的应用: 以塔北隆起哈拉哈塘凹陷奥陶系原油为例[J]. 天然气地球科学, 2013, 24(2): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302027.htmCHENG Bin, WANG Tieguan, CHANG Xiangchun. Application of C5-C7 light hydrocarbons in geochemical studies: a case study of Ordovician crude oils from the Halahatang Depression, Tabei Uplift[J]. Natural Gas Geoscience, 2013, 24(2): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302027.htm [12] 玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htmWANG Yuwei, CHEN Honghan, GUO Huifang, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htm [13] 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htmDENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm [14] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [15] 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别: 以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379HUANG Cheng. Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method: a case study of Shunbei area, Tarim Basin[J]. Petro-leum Geology & Experiment, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379 [16] 朱光有, 杨海军, 张斌, 等. 油气超长运移距离[J]. 岩石学报, 2013, 29(9): 3192-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309019.htmZHU Guangyou, YANG Haijun, ZHANG Bin, et al. Ultra-long distance migration of hydrocarbon[J]. Acta Petrologica Sinica, 2013, 29(9): 3192-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309019.htm [17] 田鹏, 马庆佑, 吕海涛. 塔里木盆地北部跃参区块走滑断裂对油气成藏的控制[J]. 石油实验地质, 2016, 38(2): 156-161. doi: 10.11781/sysydz201602156TIAN Peng, MA Qingyou, LÜ Haitao. Strike-slip faults and their controls on hydrocarbon reservoirs in the Yuecan block of the Northern Tarim Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2016, 38(2): 156-161. doi: 10.11781/sysydz201602156 [18] 何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和塔西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201302002.htmHE Dengfa, LI Desheng, HE Jinyou, et al. Comparison in petroleum geology between Kuqa Depression and southwest depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2013, 34(2): 201-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201302002.htm