留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩柱塞样与碎样孔隙度差异性分析与启示

付永红 蒋裕强 陈虎 周克明 邱峋晰 张海杰 刘雄伟 谷一凡 蒋增政

付永红, 蒋裕强, 陈虎, 周克明, 邱峋晰, 张海杰, 刘雄伟, 谷一凡, 蒋增政. 页岩柱塞样与碎样孔隙度差异性分析与启示[J]. 石油实验地质, 2020, 42(2): 302-310. doi: 10.11781/sysydz202002302
引用本文: 付永红, 蒋裕强, 陈虎, 周克明, 邱峋晰, 张海杰, 刘雄伟, 谷一凡, 蒋增政. 页岩柱塞样与碎样孔隙度差异性分析与启示[J]. 石油实验地质, 2020, 42(2): 302-310. doi: 10.11781/sysydz202002302
FU Yonghong, JIANG Yuqiang, CHEN Hu, ZHOU Keming, QIU Xunxi, ZHANG Haijie, LIU Xiongwei, GU Yifan, JIANG Zengzheng. Analysis and enlightenment of porosity differences between shale plug samples and crushed samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 302-310. doi: 10.11781/sysydz202002302
Citation: FU Yonghong, JIANG Yuqiang, CHEN Hu, ZHOU Keming, QIU Xunxi, ZHANG Haijie, LIU Xiongwei, GU Yifan, JIANG Zengzheng. Analysis and enlightenment of porosity differences between shale plug samples and crushed samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 302-310. doi: 10.11781/sysydz202002302

页岩柱塞样与碎样孔隙度差异性分析与启示

doi: 10.11781/sysydz202002302
基金项目: 

国家自然科学基金项目“页岩储层纳米孔隙结构表征及渗流机理研究” 51674044

四川省应用基础研究项目“海相页岩气建产核心区智能评价系统研究(省重)” 2019YJ0340

四川省苗子工程重点项目“基于压裂液返排规律评价页岩气储层压裂效果的方法研究” 2019JDRC0095

高等学校学科创新引智计划(111计划)“深层海相页岩气高校开发学科创新引智基地” D18016

详细信息
    作者简介:

    付永红(1990-), 男, 博士研究生, 主要从事油气地质、储层地质及油气藏开发地质研究。E-mail: fyh_swpu@163.com

  • 中图分类号: TE135

Analysis and enlightenment of porosity differences between shale plug samples and crushed samples

  • 摘要: 页岩孔隙度是评价页岩储层品质和页岩气储量计算的重要参数之一,因此准确测量页岩孔隙度十分重要。测量页岩孔隙度的方法较多,从样品形状上可分为柱塞样和碎屑颗粒样,从测量方法上可分为液体饱和法和氦气饱和法。目前对柱塞样孔隙度和碎样孔隙度测量结果比对研究较少,两者差异更是鲜见报道。首先通过测量典型柱塞样孔隙度,确定不同测量方法的适用范围;然后将柱塞样粉碎后测量其碎样孔隙度及分析影响碎样孔隙度的因素;最后比较柱塞样孔隙度和碎样孔隙度之间的差异。实验结果表明,页岩柱塞样氦孔隙度为页岩连通孔隙度,碎样氦孔隙度为页岩总孔隙度,且后者较前者高0.65%~2.40%,约占总孔隙度的11.21%~44.36%。柱塞样氦孔隙度偏小的原因主要有:(1)测量氦孔隙度的注入压力过低;(2)测量氦孔隙度前未对样品抽真空;(3)柱塞样中大量的不连通孔隙无法被氦气有效饱和。不同矿物组分与柱塞样、碎样孔隙度之间的相关性分析表明,不连通孔隙主要存在于有机质中,少量存在于黏土矿物中。为实现页岩气高效开发,可在压裂液中添加适当的化学剂,改造有机质和黏土矿物结构,释放不连通孔隙中的页岩气,以提高页岩气单井产量和页岩气采收率。

     

  • 图  1  碎样外观总体积测量原理

    Figure  1.  Measuring principle of appearance total volume of crushed sample

    图  2  样品R203-1有机孔(a)、无机孔(b)及微裂缝(c)电镜观测结果

    Figure  2.  Electron microscopic observations of organic pores(a), inorganic pores(b) and micro fractures(c) in sample R203-1

    图  3  岩心R203-1(a)和R203-4(b)在不同干燥温度下的核磁T2

    Figure  3.  NMR T2 spectra of cores R203-1(a) and R203-4(b) at different drying temperatures

    图  4  氦孔隙度与注入压力的关系

    Figure  4.  Relationship between helium porosity and injection pressure

    图  5  样品R203-1不同注入压力与平衡时间关系

    Figure  5.  Relationship between different injection pressures and balance time of sample R203-1

    图  6  粉碎粒径与氦孔隙度测量结果关系

    Figure  6.  Relationship between crushed particle size and helium porosity

    图  7  测量标块外观总体积与振实压力和振实次数的关系

    Figure  7.  Relationship between standard block volume and compaction pressure and times

    图  8  标块的测量体积与真实体积的关系

    Figure  8.  Relationship between measured and real volumes of standard blocks

    图  9  柱塞样与碎样(2.00~0.25 mm)氦孔隙度对比

    Figure  9.  Comparison of helium porosity between plug samples and crushed samples (2.00-0.25 mm)

    图  10  柱塞样和碎样氦孔隙度与有机碳含量和黏土矿物含量的关系

    Figure  10.  Relationship between helium porosity and TOC content and clay mineral content both in plug samples and crushed samples

    表  1  实验样品有机碳含量和岩石矿物学特征

    Table  1.   TOC content and petrological mineralogical characteristics of shale samples

    编号 深度/m 有机碳
    含量/%
    矿物含量/%
    黏土 石英 长石 方解石 白云石 黄铁矿
    R203-1 4 323.29 2.82 30.7 50.2 6.0 6.2 3.8 3.1
    R203-2 4 324.27 2.72 29.8 49.9 7.0 5.2 4.9 3.2
    R203-3 4 343.99 1.63 26.0 61.2 4.2 4.4 3.1 1.1
    R203-4 4 333.14 2.57 24.2 57.6 6.1 5.4 4.3 2.4
    R203-5 4 343.24 3.70 29.7 54.7 3.3 2.9 5.2 4.2
    R203-6 4 338.31 3.30 28.6 60.2 5.0 1.5 1.4 3.3
    下载: 导出CSV

    表  2  不同方法柱塞样孔隙度测量结果

    Table  2.   Plug sample porosity by various methods %

    样品号 液体饱和法孔隙度 核磁孔隙度 氦孔隙度
    饱和油 饱和盐水 饱和油 饱和盐水 0.8 MPa 3.0 MPa
    R203-1 4.49 5.71 4.55 6.99 3.71 4.25
    R203-2 4.85 5.50 4.98 4.12 3.50 4.09
    R203-3 3.06 4.11 3.16 4.98 3.20 3.80
    R203-4 3.97 4.68 4.04 5.14 2.68 3.02
    R203-5 5.02 6.05 5.49 6.78 4.05 4.98
    R203-6 4.73 6.36 4.91 6.98 4.36 5.26
    下载: 导出CSV
  • [1] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    [2] 李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业, 2009, 29(5): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905003.htm

    LI Jianzhong, DONG Dazhong, CHEN Gengsheng, et al. Prospects and strategic position of shale gas resources in China[J]. Natural Gas Industry, 2009, 29(5): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905003.htm
    [3] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    [4] 赵文智, 董大忠, 李建忠, 等. 中国页岩气资源潜力及其在天然气未来发展中的地位[J]. 中国工程科学, 2012, 14(7): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201207006.htm

    ZHAO Wenzhi, DONG Dazhong, LI Jianzhong, et al. The resource potential and future status in natural gas development of shale gas in China[J]. Engineering Sciences, 2012, 14(7): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201207006.htm
    [5] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [6] 程涌, 陈国栋, 尹琼, 等. 中国页岩气勘探开发现状及北美页岩气的启示[J]. 昆明冶金高等专科学校学报, 2017, 33(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KMYJ201701004.htm

    CHENG Yong, CHEN Guodong, YIN Qiong, et al. Exploration and development status of shale gas in China and enlightenment from North American prosperous shale gas[J]. Journal of Kunming Metallurgy College, 2017, 33(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KMYJ201701004.htm
    [7] 邹才能, 董大忠, 杨桦, 等. 中国页岩气形成条件及勘探实践[J]. 天然气工业, 2011, 31(12): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112007.htm

    ZOU Caineng, DONG Dazhong, YANG Hua, et al. Conditions of shale gas accumulation and exploration practices in China[J]. Natural Gas Industry, 2011, 31(12): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112007.htm
    [8] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [9] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
    [10] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
    [11] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm

    JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm
    [12] 陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013, 38(5): 760-765. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305008.htm

    CHEN Shangbin, XIA Xiaohong, QIN Yong, et al. Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 760-765. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305008.htm
    [13] 谢然红, 肖立志, 邓克俊. 核磁共振测井孔隙度观测模式与处理方法研究[J]. 地球物理学报, 2006, 49(5): 1567-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200605039.htm

    XIE Ranhong, XIAO Lizhi, DENG Kejun. NMR logging porosity activation and data processing method[J]. Chinese Journal of Geophysics, 2006, 49(5): 1567-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200605039.htm
    [14] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm

    YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm
    [15] LEE S, FISCHER T B, STOKES R M, et al. Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: ultrasmall-angle X-ray scattering study[J]. Energy & Fuels, 2014, 28(11): 6772-6779.
    [16] 张盼盼, 刘小平, 王雅杰, 等. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201411005.htm

    ZHANG Panpan, LIU Xiaoping, WANG Yajie, et al. Research progress in shale nanopores[J]. Advances in Earth Science, 2014, 29(11): 1242-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201411005.htm
    [17] 李桂梅. 液体饱和法岩心孔隙度测量不确定度评定[J]. 计量与测试技术, 2012, 39(4): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201204044.htm

    LI Guimei. The assessment of measuring the porosity of core using fluid saturation method[J]. Metrology & Measurement Technique, 2012, 39(4): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201204044.htm
    [18] SUN Jianmeng, DONG Xu, WANG Jinjie, et al. Measurement of total porosity for gas shales by gas injection porosimetry (GIP) method[J]. Fuel, 2016, 186: 694-707.
    [19] VERMESSE J, VIDAL D, MALBRUNOT P. Gas adsorption on zeolites at high pressure[J]. Langmuir, 1996, 12(17): 4190-4196.
    [20] MALBRUNOT P, VIDAL D, VERMESSE J. Storage of gases at room temperature by adsorption at high pressure[J]. Applied Thermal Engineering, 1996, 16(5): 375-382.
    [21] XU Mingxiang, DEHGHANPOUR H. Advances in understanding wettability of gas shales[J]. Energy & Fuels, 2014, 28(7): 4362-4375.
    [22] YANG Liu, GE Hongkui, SHI Xian, et al. Experimental and numerical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 283-297.
    [23] MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resource, 2014, 7: 22-32.
    [24] 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30(10): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201010004.htm

    JIANG Yuqiang, DONG Dazhong, QI Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201010004.htm
    [25] ODUSINA E O, SONDERGELD C H, RAI C S. NMR study of shale wettability[C]//Canadian Unconventional Resources Conference. Alberta, Canada: Society of Petroleum Engineers, 2011: 15-17.
    [26] BABADAGLI T. Scaling of co-current and counter-current capillary imbibition for surfactant and polymer injection in naturally fractured reservoirs[C]//SPE/AAPG Western Regional Meeting. Long Beach, California: SPE, 2000: 1-13.
    [27] KARPYN Z T, ALAJMI A, RADAELLI F, et al. X-ray CT and hydraulic evidence for a relationship between fracture conductivity and adjacent matrix porosity[J]. Engineering Geology, 2009, 103(3/4): 139-145.
    [28] 李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1113-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406010.htm

    LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6): 1113-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406010.htm
    [29] 王瑞飞, 沈平平, 宋子齐, 等. 特低渗透砂岩油藏储层微观孔喉特征[J]. 石油学报, 2009, 30(4): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904015.htm

    WANG Ruifei, SHEN Pingping, SONG Ziqi, et al. Characteristics of micro-pore throat in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2009, 30(4): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904015.htm
    [30] 高辉, 解伟, 杨建鹏, 等. 基于恒速压汞技术的特低-超低渗砂岩储层微观孔喉特征[J]. 石油实验地质, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206

    GAO Hui, XIE Wei, YANG Jianpeng, et al. Pore throat characteristics of extra-ultra low permeability sandstone reservoir based on constant-rate mercury penetration technique[J]. Petroleum Geology & Experiment, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206
    [31] ETMINAN S R, JAVADPOUR F, MAINI B B, et al. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in Kerogen[J]. International Journal of Coal Geology, 2014, 123: 10-19.
    [32] LUFFEL D L, HOPKINS C W, SCHETTLER JR P D. Matrix permeability measurement of gas productive shales[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers, 1993.
    [33] GLORIOSO J C, RATTIA A J. Unconventional reservoirs: basic petrophysical concepts for shale gas[C]//SPE/EAGE Euro-pean Unconventional Resources Conference and Exhibition. Vienna, Austria: SPE, 2012.
    [34] 李霞, 周灿灿, 李潮流, 等. 页岩气岩石物理分析技术及研究进展[J]. 测井技术, 2013, 37(4): 352-359. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201304003.htm

    LI Xia, ZHOU Cancan, LI Chaoliu, et al. Advances in petrophysical analysis technology of shale gas[J]. Well Logging Technology, 2013, 37(4): 352-359. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201304003.htm
    [35] 杨巍, 薛莲花, 唐俊, 等. 页岩孔隙度测量实验方法分析与评价[J]. 沉积学报, 2015, 33(6): 1258-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201506018.htm

    YANG Wei, XUE Lianhua, TANG Jun, et al. Analysis and evaluation of different measuring methods for shale porosity[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1258-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201506018.htm
    [36] BAHADUR J, RADLINSKI A P, MELNICHENKO Y B, et al. Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) study of new albany shale: a treatise on microporosity[J]. Energy & Fuels, 2015, 29(2): 567-576.
    [37] SUN Mengdi, YU Bingsong, HU Qinhong, et al. Pore structure characterization of organic-rich Niutitang shale from China: Small Angle Neutron Scattering (SANS) study[J]. International Journal of Coal Geology, 2018, 186: 115-125.
    [38] TINNI A, SONDERGELD C, RAI C. Particle size effect on porosity and specific surface area measurements of shales[C]//International Symposium of the Society of Core Analysts. Avignon, France: SCA, 2014.
    [39] KARASTATHIS A. Petrophysical measurements on tight gas shale[D]. Norman, Oklahoma: University of Oklahoma, 2007.
    [40] COMISKY J T, SANTIAGO M, MCCOLLOM B, et al. Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales[C]//Canadian Unconventional Resources Conference. Calgary, Alberta, Canada: SPE, 2011.
    [41] 刘欣, 张莉娜, 张耀祖. 川东南页岩气井压裂参数对开发效果的影响: 以LP-133HF井为例[J]. 油气藏评价与开发, 2018, 8(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201805013.htm

    LIU Xin, ZHANG Lina, ZHANG Yaozu. Influence of fracturing parameters on development effects of shale gas wells in southeast Sichuan Basin: a case of well LP-133HF[J]. Reservoir Evaluation and Development, 2018, 8(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201805013.htm
    [42] 蒋廷学, 苏瑗, 卞晓冰, 等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发, 2019, 9(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905010.htm

    JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2019, 9(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905010.htm
    [43] 王妍妍, 刘华, 王卫红, 等. 基于返排产水数据的页岩气井压裂效果评价方法[J]. 油气地质与采收率, 2019, 26(4): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904020.htm

    WANG Yanyan, LIU Hua, WANG Weihong, et al. Evaluation of shale gas well fracturing performance based on flowback water production data[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904020.htm
    [44] 赖富强, 罗涵, 覃栋优, 等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏, 2018, 25(3): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803030.htm

    LAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803030.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1110
  • HTML全文浏览量:  93
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2019-12-29
  • 刊出日期:  2020-03-28

目录

    /

    返回文章
    返回