留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泥页岩三维定量荧光分析技术与应用

钱门辉 蒋启贵 黎茂稳 李志明 刘鹏

钱门辉, 蒋启贵, 黎茂稳, 李志明, 刘鹏. 泥页岩三维定量荧光分析技术与应用[J]. 石油实验地质, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311
引用本文: 钱门辉, 蒋启贵, 黎茂稳, 李志明, 刘鹏. 泥页岩三维定量荧光分析技术与应用[J]. 石油实验地质, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311
QIAN Menhui, JIANG Qigui, LI Maowen, LI Zhiming, LIU Peng. Three-dimensional quantitative fluorescence analysis and application in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311
Citation: QIAN Menhui, JIANG Qigui, LI Maowen, LI Zhiming, LIU Peng. Three-dimensional quantitative fluorescence analysis and application in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311

泥页岩三维定量荧光分析技术与应用

doi: 10.11781/sysydz202002311
基金项目: 

国家科技重大专项 2017ZX05049001

详细信息
    作者简介:

    钱门辉(1985-), 男, 硕士, 副研究员, 从事页岩油气地球化学、石油实验地质研究工作。E-mail: qianmh.syky@sinopec.com

  • 中图分类号: TE135

Three-dimensional quantitative fluorescence analysis and application in shale

  • 摘要: 泥页岩含油性评价是陆相页岩油勘探开发的基础。利用三维定量荧光分析,可以对泥页岩样品的含油性进行快速评价。而由于轻烃散失及泥页岩低孔渗特性的影响,以往针对常规油气建立的三维定量荧光分析方法,并不能直接应用于泥页岩样品分析。通过溶剂萃取时间、粒径大小及超声辅助等因素的对比条件实验,确定了泥页岩三维定量荧光分析技术的前处理方法及分析流程,并在江汉盆地页岩油专探井取心段进行了初步应用。结果表明,该井潜江组三段四亚段(潜34)10韵律及潜四段下亚段(潜4)6韵律和15韵律整体含油较高,是有利的页岩油目的层段。对比岩石热解结果,两种方法反映了一致的含油性变化趋势,说明三维定量荧光分析是一种快速、可信的含油性评价方法。

     

  • 图  1  前处理交叉实验流程

    Figure  1.  Experiment preprocessing flow

    图  2  不同粒径大小样品冷抽提实验结果

    Figure  2.  Normal extraction results of samples with different particle sizes

    图  3  0.5 cm粒径样品浸泡12 h后两种前处理方式萃取结果定量对比

    Figure  3.  Different results of 0.5 cm particle size samples with two pretreatment methods after 12 h

    图  4  0.5 cm粒径样品浸泡12 h后两种前处理方式萃取产物全烃色谱图对比

    Figure  4.  Comparison of total hydrocarbon chromatogram of extraction products of two different methods after 12 h for 0.5 cm particle size samples

    图  5  不同时间不同颗粒大小的样品超声辅助冷抽提结果

    Figure  5.  Results of different particle size samples at different times by ultrasonic assisted normal extraction

    图  6  江汉盆地潜江凹陷蚌页油X井三维荧光定量测试结果

    Figure  6.  TQF results of well BYYx, Qianjiang Sag, Jianghan Basin

    图  7  江汉盆地潜江凹陷蚌页油X井荧光含油率与热解S1值关系

    Figure  7.  Relationship between fluorescence oil content and pyrolysis S1 in well BYYx, Qianjiang Sag, Jianghan Basin

    表  1  0.5 cm粒径样品12 h后两种前处理方式萃取产物全烃色谱参数对比

    Table  1.   Comparison of total hydrocarbon chromatographic parameters of extraction products of two different methods after 12 h for 0.5 cm particle size samples

    前处方式 主峰碳 OEP CPI Pr/nC17 Ph/nC18 Pr/Ph nC21-/nC22+
    超声辅助冷浸泡 nC26 1.25 0.85 0.777 3.875 0.212 0.56
    常规冷浸泡 nC26 1.24 0.85 0.719 3.721 0.215 0.51
    下载: 导出CSV

    表  2  荧光含油率评价级别

    Table  2.   Evaluation of TQF oil content

    储层类型 荧光级别 荧光含油率/(mg·g-1) 荧光含油率范围/(mg·g-1)
    干层 1 0.01 Co≤0.25
    2 0.02
    3 0.05
    4 0.10
    5 0.25
    Ⅲ类页岩油层 6 0.4 0.25 < Co≤1.6
    7 0.8
    8 1.6
    Ⅱ类页岩油层 9 3.1 1.6 < Co≤6.3
    10 6.3
    Ⅰ类页岩油层 11 12.5 Co>6.3
    12 25.0
    13 50.0
    14 100.0
    15 200.0
    下载: 导出CSV
  • [1] 康玉柱. 中国非常规油气勘探重大进展和资源潜力[J]. 石油科技论坛, 2018, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201804001.htm

    KANG Yuzhu. Significant exploration progress and resource potential of unconventional oil and gas in China[J]. Oil Forum, 2018, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201804001.htm
    [2] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
    [3] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htm

    SUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htm
    [4] 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm

    ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm
    [5] 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm

    ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm
    [6] 张文正, 杨华, 杨伟伟, 等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价[J]. 地球化学, 2015, 44(5): 505-515. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201505010.htm

    ZHANG Wenzheng, YANG Hua, YANG Weiwei, et al. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang7 Member of Yanchang Formation, Ordos Basin[J]. Geochimica, 2015, 44(5): 505-515. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201505010.htm
    [7] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
    [8] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm

    LI Maowen, MA Xiaoxiao, Jiang Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm
    [9] 钱门辉, 蒋启贵, 黎茂稳, 等. 湖相页岩不同赋存状态的可溶有机质定量表征[J]. 石油实验地质, 2017, 39(2): 278-286. doi: 10.11781/sysydz201702278

    QIAN Menhui, JIANG Qigui, LI Maowen, et al. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J]. Petroleum Geology and Experiment, 2017, 39(2): 278-286. doi: 10.11781/sysydz201702278
    [10] 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htm

    LU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htm
    [11] 王民, 焦晨雪, 李传明, 等. 东营凹陷沙河街组页岩微观孔隙多重分形特征[J]. 油气地质与采收率, 2019, 26(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901008.htm

    WANG Min, JIAO Chenxue, LI Chuanming, et al. Multi-fractal characteristics of micro-pores of Shahejie Formation shale in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901008.htm
    [12] 方正伟, 张守鹏, 刘惠民, 等. 济阳坳陷沙四段上亚段-沙三段下亚段泥页岩层理结构特征及储集性控制因素[J]. 油气地质与采收率, 2019, 26(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901011.htm

    FANG Zhengwei, ZHANG Shoupeng, LIU Huimin, et al. Bedding structure characteristics and the storage controlling factors of mud-shale in Upper Es4 to Lower Es3 Members in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901011.htm
    [13] 邵新荷, 庞雄奇, 胡涛, 等. 渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J]. 石油与天然气地质, 2019, 40(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901008.htm

    SHAO Xinhe, PANG Xiongqi, HU Tao, et al. Microscopic characte-ristics of pores in Es3 shales and its significances for hydrocarbon retention in Dongpu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901008.htm
    [14] 朱日房, 张林晔, 李政, 等. 陆相断陷盆地页岩油资源潜力评价: 以东营凹陷沙三段下亚段为例[J]. 油气地质与采收率, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htm

    ZHU Rifang, ZHANG Linye, LI Zheng, et al. Evaluation of shale oil resource potential in continental rift basin: a case study of Lower Es3 Member in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htm
    [15] 余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm

    YU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm
    [16] 谢文泉, 刘招君, 肖丽佳, 等. 柴北缘鱼卡地区中侏罗统石门沟组油页岩资源潜力[J]. 特种油气藏, 2018, 25(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805015.htm

    XIE Wenquan, LIU Zhaojun, XIAO Lijia, et al. Oil shale resource potential of the Middle Jurassic Shimengou Formation in Yuka of the north rim in Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805015.htm
    [17] 李俊乾, 卢双舫, 张婕, 等. 页岩油吸附与游离定量评价模型及微观赋存机制[J]. 石油与天然气地质, 2019, 40(3): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903014.htm

    LI Junqian, LU Shuangfang, ZHANG Jie, et al. Quantitative evaluation models of adsorbed and free shale oil and its microscopic occurrence mechanism[J]. Oil & Gas Geology, 2019, 40(3): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903014.htm
    [18] 谌卓恒, 黎茂稳, 姜春庆, 等. 页岩油的资源潜力及流动性评价方法: 以西加拿大盆地上泥盆统Duvernay页岩为例[J]. 石油与天然气地质, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm

    CHEN Zhuoheng, LI Maowen, JIANG Chunqing, et al. Shale oil resource potential and its mobility assessment: a case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm
    [19] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [20] 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数——含油率的校正[J]. 石油与天然气地质, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm

    XUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content: one key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm
    [21] 王娟. 轻质烃组分的低温密闭抽提技术及其在页岩油资源评价中的应用[J]. 中国石油勘探, 2015, 20(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201503007.htm

    WANG Juan. Low-temperature closed extraction technology of light hydrocarbons and its application in evaluation of shale oil resource[J]. China Petroleum Exploration, 2015, 20(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201503007.htm
    [22] 李进步, 卢双舫, 陈国辉, 等. 大民屯凹陷E2s42段页岩油资源评价关键参数S1的校正[C]//2014年中国地球科学联合学术年会. 北京: 中国地球物理学会, 2014: 2494-2496.

    LI Jinbu, LU Shuangfang, CHEN Guohui, et al. Correction of key parameters S1 for shale oil resource evaluation in E2s42 section of Damintun Depression[C]//2014 China Earth Science Joint Academic Annual Meeting. Beijing: Chinese Geophysical Society, 2014: 2494-2496.
    [23] 王敏. 页岩油评价的关键参数及求取方法研究[J]. 沉积学报, 2014, 32(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401020.htm

    WANG Min. Key parameter and calculation in shale oil reservoir evaluation[J]. Acta Sedimentologica Sinica, 2014, 32(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401020.htm
    [24] 朱日房, 张林晔, 李钜源, 等. 页岩滞留液态烃的定量评价[J]. 石油学报, 2015, 36(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201501002.htm

    ZHU Rifang, ZHANG Linye, LI Juyuan, et al. Quantitative evaluation of residual liquid hydrocarbons in shale[J]. Acta Petrolei Sinica, 2015, 36(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201501002.htm
    [25] 边军, 许廷生, 曹中宏, 等. 三维荧光分析在油气勘探的应用[J]. 中国科技信息, 2010(17): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201017013.htm

    BIAN Jun, XU Tingsheng, CAO Zhonghong, et al. Application of 3D fluorescence analysis in oil and gas exploration[J]. China Science and Technology Information, 2010(17): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201017013.htm
    [26] HARTLINE F F. Three-dimensional fluorescence spectroscopy[J]. Science, 1979, 203(4387): 1330-1331.
    [27] BROOKS J M, KENNICUTT Ⅱ M C, CAREY JR B D. Offshore surface geochemical exploration[J]. Oil & Gas Journal, 1986, 84(42): 66-72.
    [28] REYES M V. The application of fluorescence techniques for mud logging analysis of oil drilled with oil-based muds[C]//Proceedings of the 22nd Annual Convention[s. l. ]: AAPG, 1993: 157-170.
    [29] RYDER A G. Analysis of crude petroleum oils using fluorescence spectroscopy[M]//GEDDES C D, LAKOWICZ J R. Reviews in Fluorescence 2005. Boston, MA: Springer, 2005: 169-198.
    [30] ANDREWS A B, SCHNEIDER M H, CAÑAS J, et al. Fluorescence methods for downhole fluid analysis of heavy oil emulsions[J]. Journal of Dispersion Science and Technology, 2008, 29(2): 171-183.
    [31] 雍克岚. 三维荧光指纹技术及其在石油地球化学勘探中的应用[J]. 石油实验地质, 1992, 14(4): 432-442. doi: 10.11781/sysydz199204432

    YONG Kelan. Three dimentional fluorescent fingerprint technique and its application to petroleum exploration[J]. Experimental Petroleum Geology, 1992, 14(4): 432-442. doi: 10.11781/sysydz199204432
    [32] 国家能源局. 石油定量荧光录井规范: SY/T 6611-2017[S]. 北京: 石油工业出版社, 2017.

    National Energy Administration. Specification for oil fluorescence quantitative analysis: SY/T 6611-2017[S]. Beijing: Petroleum Industry Press, 2017.
    [33] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
    [34] 国家发展和改革委员会. 岩石中氯仿沥青的测定: SY/T 5118-2005[S]. 北京: 石油工业出版社, 2005.

    National Development and Reform Commission. Determination of bitumen from rocks by chloroform extraction: SY/T 5118-2005[S]. Beijing: Petroleum Industry Press, 2005.
    [35] 冯若. 超声手册[M]. 南京: 南京大学出版社, 1999: 658-663.

    FENG Ruo. Ultrasonics handbook[M]. Nanjing: Nanjing University Press, 1999: 658-663.
    [36] 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849

    JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849
    [37] 辛宏伟, 丁羽, 李庆凯. 超声波清洗技术的发展与研究现状[J]. 科技创新与应用, 2017(8): 71. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201708049.htm

    XIN Hongwei, DING Yu, LI Qingkai. Development and research status of ultrasonic cleaning technology[J]. Technology Innovation and Application, 2017(8): 71. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201708049.htm
    [38] 李小强, 赵德智, 王童, 等. 超声波作用下重油的热反应研究[J]. 辽宁化工, 2007, 36(1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG200701008.htm

    LI Xiaoqiang, ZHAO Dezhi, WANG Tong, et al. Research on thermal reaction of heavy oil under function of ultrasonic wave[J]. Liaoning Chemical Industry, 2007, 36(1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG200701008.htm
    [39] 中国石油化工股份有限公司油田勘探开发事业部. 页岩油勘探选区评价方法: Q/SH 0503-2013[S]. 北京: 中国石化出版社, 2013.

    Oilfield Exploration and Development Division of SINOPEC. Evaluation method of shale oil exploration zones: Q/SH 0503-2013[S]. Beijing: SINOPEC Press, 2013.
    [40] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1168
  • HTML全文浏览量:  221
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-12-26
  • 刊出日期:  2020-03-28

目录

    /

    返回文章
    返回