Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin
-
摘要: 四川盆地陆相页岩气勘探虽然已在涪陵、元坝等地区下侏罗统大安寨段获得工业气流,但与海相下志留统龙马溪组页岩气相比,富集条件存在较大的差异,勘探潜力尚待探索。通过X衍射矿物组分、有机地化、氩离子抛光-扫描电镜、压汞-吸附联合测定、脉冲渗透率、纳米CT、含气性测试等方法技术,对控制陆相页岩气富集的岩性组合、成熟度和压力3个关键因素进行了研究。湖相碳酸盐湖坡风暴滩沉积的页岩与介屑灰岩不等厚互层,具有良好页岩气生烃(有机质丰度大于1.4%)、储集(孔隙度大于3%)、渗透(水平缝发育)和可压裂(脆性指数大于0.6)的配置条件,为最有利的岩性组合类型;成熟度控制着页岩储层有机质孔的发育和页岩油气的生成(以成熟度1.3%为界);超压(压力系数大于1.2)是陆相页岩油气富集高产的关键。据此将陆相页岩油气富集类型划分为超高压高成熟页岩与灰岩互层页岩气型和超压低成熟页岩与灰岩互层页岩油气型;优选涪陵北东岳庙段和元坝大安寨段为页岩气有利目标,涪陵北和阆中-平昌大安寨段、建南东岳庙段、元坝千佛崖组二段为页岩油气较有利目标。Abstract: Continental shale gas has achieved commercial production in the Lower Jurassic Daanzhai Member in the Fuling and Yuanba areas in the Sichuan Basin; however, the accumulation conditions are different from the marine facies Lower Silurian Longmaxi shale gas, and the exploration potential remains to be explored. The X-ray diffraction analysis of mineral composition, geochemical analysis, argon ion polishing-scanning electron microscopy, mercury intrusion-adsorption combined measurement, pulse permeability, nano-CT and gas content were applied to study three key factors controlling the enrichment of lacustrine shale gas, including lithologic combination, maturity and pressure conditions. The shales deposited on a storm beach of the carbonate lake slope of the lake facies are interbedded with the coquina limestone of unequal thickness, which is the most favorable lithologic combination with favorable configuration conditions for shale gas generation (organic matter abundance greater than 1.4%), reservoir (porosity greater than 3%), permeability (horizontal fracture developed) and fracturing (brittleness index greater than 0.6). Maturity controls the development of organic pores and the formation of shale oil and gas (Ro=1.3% as the maturity boundary). Overpressure (pressure coefficient greater than 1.2) is the key to the enrichment and high yield of continental shale oil and gas. The accumulation of continental shale oil and gas can be divided into two types: ultra-high pressure, high maturity shale interbedded with limestone and ultra-high pressure, low maturity shale interbedded with limestone. The most favorable target for shale gas exploration in the lacustrine facies of the Sichuan Basin includes the Daanzhai Member in Yuanba and the Dongyuemiao section in Fuling. The Daanzhai Member in the northern Fuling and Langzhong-Pingchang, the Dongyuemiao Section in Jiannan, and the second section of Qianfoya Formation in Yuanba are secondary favorable target for shale oil and gas exploration.
-
Key words:
- lithologic combination /
- maturity /
- overpressure /
- enrichment type /
- continental shale oil and gas /
- Sichuan Basin
-
表 1 四川盆地下侏罗统岩性组合类型沉积特征对比
Table 1. Comparison of sedimentary characteristics of lithologic combination types of Lower Jurassic in Sichuan Basin
沉枳模式 较大湖进期碳酸盐湖泊 局限湖进期陆源碎屑湖泊 亚相类型 碳酸盐浅湖 湖坡 半深湖 滨湖 碎屑岩浅湖 半深湖 微相类型 介屑滩 风暴滩 半深湖泥 滩坝 砂泥坪 半深湖泥 岩性组合类型 厚层介屑灰岩夹薄层泥页岩 页岩与介屑灰岩不等厚互层 厚层页岩夹薄层介壳灰岩 厚层粉砂岩夹薄层泥岩 纹层状泥页岩与粉砂岩不等厚互层 厚层泥页岩夹薄层粉砂岩 宏观岩心 微观镜下 泥地比/% < 50 50~70 70~90 < 50 50~70 70~90 沉积构造 块状 弱页理、纹理 弱页理 斜层理 纹层状 块状 分布层段 涪陵大安寨一段 涪陵、元坝大安寨二段 涪陵、元坝大安寨二段 元坝东岳庙段 元坝东岳庙段 元坝东岳庙段 表 2 四川盆地下侏罗统页岩油气有利目标评价
Table 2. Favorable targets for shale oil and gas exploration in Lower Jurassic, Sichuan Basin
富集类型 区块 目的层 埋深/m 岩性组合 有机碳含量/% 成熟度/% 压力系数 综合评价 超高压高成熟页岩与灰岩互层页岩气型 川东北元坝—达县 大安寨段 3 800~4 300 页岩与介屑灰岩不等厚互层 0.40~3.64/1.38 1.44~1.83/1.67 1.61~2.07 有利 川东南涪陵北 东岳庙段 2 300~3 000 0.53~4.85/1.78 1.36~1.52/1.44 1.3~1.5 有利 超压低成熟页岩与灰岩互层页岩油气型 渝东建南—利川 东岳庙段 600~640 0.51~2.87/1.44 0.8~1.33/1.0 1.0~1.12 较有利 川东南涪陵北 大安寨段 2 100~2 500 0.64~3.28/1.33 1.1~1.5/1.27 1.1~1.4 较有利 川中阆中—平昌 大安寨段 3 300~3 600 0.43-2.19/1.09 0.53-1.87/1.08 1.2 较有利 川东北元坝 千佛崖组二段 3 500~3 800 0.74~2.05/1.15 1.38~1.82/1.52 1.88 较有利 注:表中数值意义为最小值~最大值/平均值。 -
[1] 康玉柱. 中国非常规泥页岩油气藏特征及勘探前景展望[J]. 天然气工业, 2012, 32(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204003.htmKANG Yuzhu. Characteristics and exploration prospect of unconventional shale gas reservoirs in China[J]. Natural Gas Industry, 2012, 32(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204003.htm [2] 张金川, 姜生玲, 唐玄, 等. 我国页岩气富集类型及资源特点[J]. 天然气工业, 2009, 29(12): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200912039.htmZHANG Jinchuan, JIANG Shengling, TANG Xuan, et al. Accumulation types and resources characteristics of shale gas in China[J]. Natural Gas Industry, 2009, 29(12): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200912039.htm [3] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040 [4] 李延钧, 冯媛媛, 刘欢, 等. 四川盆地湖相页岩气地质特征与资源潜力[J]. 石油勘探与开发, 2013, 40(4): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304004.htmLI Yanjun, FENG Yuanyuan, LIU Huan, et al. Geological characte-ristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2013, 40(4): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304004.htm [5] 郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101003.htmGUO Tonglou, LI Yuping, WEI Zhihong. Reservoir-forming conditions of shale gas in Ziliujing Formation of Yuanba area in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101003.htm [6] 王良军, 王庆波. 四川盆地涪陵自流井组页岩气形成条件与勘探方向[J]. 西北大学学报(自然科学版), 2013, 43(5): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201305019.htmWANG Liangjun, WANG Qingbo. Formation conditions and explorative directions of Jurassic shale gas in Fuling Sichuan Basin[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(5): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201305019.htm [7] 魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3): 970-981. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403022.htmWEI Xiangfeng, HUANG Jing, LI Yuping, et al. The main factors controlling the enrichment and high production of Da'anzhai Member continental shale gas in Yuanba area[J]. Geology in China, 2014, 41(3): 970-981. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403022.htm [8] 何发岐, 朱彤. 陆相页岩气突破和建产的有利目标: 以四川盆地下侏罗统为例[J]. 石油实验地质, 2012, 34(3): 246-251. doi: 10.11781/sysydz201203246HE Faqi, ZHU Tong. Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 246-251. doi: 10.11781/sysydz201203246 [9] 朱彤, 包书景, 王烽. 四川盆地陆相页岩气形成条件及勘探开发前景[J]. 天然气工业, 2012, 32(9): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201209003.htmZHU Tong, BAO Shujing, WANG Feng. Pooling conditions of non-marine shale gas in the Sichuan Basin and its exploration and development prospect[J]. Natural Gas Industry, 2012, 32(9): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201209003.htm [10] 郑和荣, 高波, 彭勇民, 等. 中上扬子地区下志留统沉积演化与页岩气勘探方向[J]. 古地理学报, 2013, 15(5): 645-656. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305011.htmZHENG Herong, GAO Bo, PENG Yongmin, et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area[J]. Journal of Palaeogeography, 2013, 15(5): 645-656. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305011.htm [11] 张春明, 张维生, 郭英海. 川东南-黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 2012, 19(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htmZHANG Chunming, ZHANG Weisheng, GUO Yinghai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, l9(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htm [12] 蒲秀刚, 时战楠, 韩文中, 等. 陆相湖盆细粒沉积区页岩层系石油地质特征与油气发现: 以黄骅坳陷沧东凹陷孔二段为例[J]. 油气地质与采收率, 2019, 26(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901005.htmPU Xiugang, SHI Zhannan, HAN Wenzhong, et al. Petroleum geolo-gical characteristics and hydrocarbon discovery of shale system in fine-grained sedimentary area of lacustrine basin: a case study of Kong2 Member in Cangdong Sag, Huanghua Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901005.htm [13] 赵静. 陆相页岩气成藏条件分析: 以松辽盆地南部S洼槽为例[J]. 断块油气田, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htmZHAO Jing. Accumulation conditions of shale gas in continental facies: taking S Depression of Songliao Basin as an example[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htm [14] 郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考: 以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htmGUO Xusheng, HU Dongfeng, LI Yuping, et al. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: a case study in shales of Longmaxi Formation and Da'anzhai Section of Ziliujing Formation in Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm [15] 朱彤, 俞凌杰, 王烽. 四川盆地海相、湖相页岩气形成条件对比及开发策略[J]. 天然气地球科学, 2017, 28(4): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704019.htmZHU Tong, YU Lingjie, WANG Feng. Comparative analysis of the accumulation conditions and development strategies of the marine and lacustrine shale gas from the Sichuan Basin, China[J]. Natural Gas Geoscience, 2017, 28(4): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704019.htm [16] 李廷微, 姜振学, 宋国奇, 等. 陆相和海相页岩储层孔隙结构差异性分析[J]. 油气地质与采收率, 2019, 26(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901007.htmLI Tingwei, JIANG Zhenxue, SONG Guoqi, et al. Analysis of differences in pore structure between continental and marine shale reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901007.htm [17] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比: 以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htmWANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shale: a case study of the Lower Cambrian in Cengong area, northern Guizhou Province[J]. Oil & Gas Geo-logy, 2018, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htm [18] 胡宗全, 郑荣才, 熊应明. 四川盆地下侏罗统大安寨组层序分析[J]. 天然气工业, 2000, 20(3): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200003010.htmHU Zongquan, ZHENG Rongcai, XIONG Yingming. Sequence analysis of Da'anzhai Formation of Lower Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2000, 20(3): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200003010.htm [19] 郑荣才. 四川盆地下侏罗统大安寨段高分辨率层序地层学[J]. 沉积学报, 1998, 16(2): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB802.008.htmZHENG Rongcai. High-resolution sequence stratigraphy of Da'anzhai Formation, Lower Jurassic in Sichuan Basin[J]. Acta Sedimentolo-gica Sinica, 1998, 16(2): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB802.008.htm [20] 朱彤, 龙胜祥, 王烽, 等. 四川盆地湖相泥页岩沉积模式及岩石相类型[J]. 天然气工业, 2016, 36(8): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608004.htmZHU Tong, LONG Shengxiang, WANG Feng, et al. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(8): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608004.htm [21] 邓莉, 刘君龙, 钱玉贵, 等. 川西地区龙门山前带侏罗系物源与沉积体系演化[J]. 石油与天然气地质, 2019, 40(2): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902017.htmDENG Li, LIU Junlong, QIAN Yugui, et al. Provenance and sedimentary system of the Jurassic successions in the front of Longmen Mountain in western Sichuan Basin[J]. Oil & Gas Geology, 2019, 40(2): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902017.htm [22] 于海跃, 尹伟, 刘君龙. 龙门山山前带侏罗系近源冲积体系沉积特征与成因模式[J]. 断块油气田, 2019, 26(3): 273-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903002.htmYU Haiyue, YIN Wei, LIU Junlong. Sedimentary characteristics and genetic model of Jurassic alluvial deposits in piedmont zone of Longmen Mountain[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 273-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903002.htm [23] 王玮, 黄东, 易海永, 等. 淡水湖相页岩小层精细划分及地球化学特征: 以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2019, 41(5): 724-730. doi: 10.11781/sysydz201905724WANG Wei, HUANG Dong, YI Haiyong, et al. Stratigraphic division and geochemical characteristics of freshwater lacustrine shale: a case study of Jurassic Da'anzhai Section, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(5): 724-730. doi: 10.11781/sysydz201905724 [24] 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系: 以川东南地区五峰组-龙马溪组为例[J]. 石油与天然气地质, 2015, 36(6): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506017.htmHU Zongquan, DU Wei, PENG Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: a case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506017.htm [25] 朱彤, 胡宗全, 刘忠宝, 等. 四川盆地湖相页岩气源-储配置类型及评价[J]. 石油与天然气地质, 2018, 39(6): 1146-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806006.htmZHU Tong, HU Zongquan, LIU Zhongbao, et al. Types and evaluation of the source-reservoir configuration of lacustrine shale gas in the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(6): 1146-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806006.htm [26] 张子亚, 魏家琦, 石砥石, 等. 桂中坳陷中泥盆统罗富组富有机质泥页岩特征及意义[J]. 石油实验地质, 2019, 41(1): 16-22. doi: 10.11781/sysydz201901016ZHANG Ziya, WEI Jiaqi, SHI Dishi, et al. Shale gas characteristics of organic-rich shale in Luofu Formation in Guizhong Depression[J]. Petroleum Geology & Experiment, 2019, 41(1): 16-22. doi: 10.11781/sysydz201901016 [27] 葛明娜, 庞飞, 包书景. 贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制: 以安页1井为例[J]. 石油实验地质, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023GE Mingna, PANG Fei, BAO Shujing. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology & Experiment, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023 [28] LOUCKS R G, RUPPEL S C. Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. [29] HENTZ T, RUPPEL S. Regional stratigraphic and rock characteristics of Eagle Ford shale in its play area: Maverick Basin to East Texas Basin[C]//AAPG Annual Conference and Exhibition. Houston, TX, USA: AAPG, 2011. [30] 袁玉松, 刘俊新, 周雁, 等. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质, 2018, 39(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htmYuan Yusong, Liu Junxin, Zhou Yan. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm [31] 王朋飞, 姜振学, 吕鹏, 等. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807010.htmWANG Pengfei, JIANG Zhenxue, LÜ Peng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018, 29(7): 997-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807010.htm [32] 任岚, 林然, 赵金洲, 等. 页岩气水平井增产改造体积评价模型及其应用[J]. 天然气工业, 2018, 38(8): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808011.htmREN Lan, LIN Ran, ZHAO Jinzhou, et al. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 2018, 38(8): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808011.htm [33] 赵文韬, 侯贵廷, 张居增, 等. 层厚与岩性控制裂缝发育的力学机理研究: 以鄂尔多斯盆地延长组为例[J]. 北京大学学报(自然科学版), 2015, 51(6): 1047-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201506010.htmZHAO Wentao, HOU Guiting, ZHANG Juzeng, et al. Study on the development law of structural fractures of Yanchang Formation in Longdong area, Ordos Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(6): 1047-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201506010.htm [34] 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504018.htmXU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504018.htm [35] 洪克岩, 朱亮亮, 程晓艳, 等. 湘鄂西构造复杂区页岩气井含气性及可压性评价: 以湖北鹤峰区块HY1井为例[J]. 断块油气田, 2018, 25(6): 721-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806008.htmHONG Keyan, ZHU Liangliang, CHENG Xiaoyan, et al. Compressive evaluation and gas-containing of shale gas well in tectonic complex areaof western Hunan and Hubei: taking Well HY1 of Hefeng Block as an example[J]. Fault-Block Oil and Gas Field, 2018, 25(6): 721-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806008.htm [36] 朱彤, 王烽, 俞凌杰, 等. 四川盆地页岩气富集控制因素及类型[J]. 石油与天然气地质, 2016, 37(3): 399-407. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603014.htmZHU Tong, WANG Feng, YU Lingjie, et al. Controlling factors and types of shale gas enrichment in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(3): 399-407. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603014.htm [37] REED R M, LOUCKS R, MILLIKEN K L. Heterogeneity of shape and microscale spatial distribution in organic-matter-hosted pores of gas shales[C]//Proceedings of 2012 AAPG Annual Convention and Exhibition. Long Beach, California: AAPG, 2012. [38] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. [39] HILL R J, ZHANG Etuan, KATZ B J, et al. Modeling of gas gene-ration from the Barnett shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 501-521. [40] 薛莲花, 杨巍, 仲佳爱, 等. 富有机质页岩生烃阶段孔隙演化: 来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 2015, 89(5): 970-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201505011.htmXUE Lianhua, YANG Wei, ZHONG Jia'ai, et al. Porous evolution of the organic-rich shale from simulated experiment with geological constrains, samples from Yanchang Formation in Ordos Basin[J]. Acta Geologica Sinica, 2015, 89(5): 970-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201505011.htm [41] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/3): 223-239. [42] 罗小平, 吴飘, 赵建红, 等. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 50-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501007.htmLUO Xiaoping, WU Piao, ZHAO Jianhong, et al. Study advances on organic pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(1): 50-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501007.htm [43] 曹涛涛, 宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201604002.htmCAO Taotao, SONG Zhiguang. Effects of organic matter properties on organic pore development and reservoir[J]. Special Oil and Gas Reservoirs, 2016, 23(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201604002.htm [44] 李耀华. 四川盆地下侏罗统陆相有机质演化特征与油气分布规律[J]. 西南石油学院学报, 1998, 20(1): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY801.008.htmLI Yaohua. Characteristics of terrestrial organic matter evolution and regularity of hydrocarbon distribution in Lower Jurassic in Sichuan Basin[J]. Journal of Southwest Petroleum Institute, 1998, 20(1): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY801.008.htm [45] 郑荣才, 何龙, 梁西文, 等. 川东地区下侏罗统大安寨段页岩气(油)成藏条件[J]. 天然气工业, 2013, 33(12): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312005.htmZHENG Rongcai, HE Long, LIANG Xiwen, et al. Forming conditions of shale gas (oil) plays in the Lower Jurassic Da'anzhai Member in the eastern Sichuan Basin[J]. Natural Gas Industry, 2013, 33(12): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312005.htm [46] 周德华, 焦方正, 郭旭升, 等. 川东南涪陵地区下侏罗统页岩油气地质特征[J]. 石油与天然气地质, 2013, 34(4): 450-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304006.htmZHOU Dehua, JIAO Fangzheng, GUO Xusheng, et al. Geological features of the Lower Jurassic shale gas play in Fuling area, the southeastern Sichuan Basin[J]. Oil & Gas Geology, 2013, 34(4): 450-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304006.htm [47] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htmHU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [48] 张健, 刘树根, 冉波, 等. 异常高压与页岩气保存[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 177-187. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201602004.htmZHANG Jian, LIU Shugen, RAN Bo, et al. Abnormal overpressure and shale gas preservation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(2): 177-187. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201602004.htm [49] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区页岩气保存条件分析[J]. 油气地质与采收率, 2019, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htmHE Shun, QIN Qirong, FAN Cunhui, et al. Shale gas preservation conditions in Dingshan area, Southeastern Sichuan[J]. Petro-leum Geology and Recovery Efficiency, 2019, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htm [50] 刘伟新, 范明, 俞凌杰, 等. 页岩气保存机制探讨[J]. 石油实验地质, 2018, 40(1): 126-132. doi: 10.11781/sysydz201801126YANG Zhenheng, FAN Ming, YU Lingjie, et al. Preservation mechanism of Fuling shale gas[J]. Petroleum Geology & Experi-ment, 2018, 40(1): 126-132. doi: 10.11781/sysydz201801126 [51] 徐旭辉, 朱建辉, 江兴歌, 等. TSM盆地模拟原理方法与应用[J]. 石油实验地质, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729XU Xuhui, ZHU Jianhui, JIANG Xingge, et al. Principle of TSM basin simulation system and its application[J]. Petroleum Geo-logy & Experiment, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729