Disruptive effects of faulting on shale gas preservation in Upper Yangtze region
-
摘要: 以四川盆地及周缘下古生界海相页岩层系断裂活动为研究对象,通过地震综合解释及对页岩层系裂缝方解石脉中流体包裹体的分析测试,结合不同含气性典型页岩气钻井解剖,开展了断裂活动对页岩气后期保存破坏作用的研究。断裂的级别及空间叠置方式、断裂活动的期次及其持续性对页岩气的保存条件具有重要的影响:①断裂级别越高其影响范围越大,距离一级断裂约10 km以内,保存条件破坏较大;距离二级断裂5 km以内,页岩含气性受影响明显;距离三级断裂2~3 km以内受一定影响;四级断裂影响不明显;②在井区断裂密度相似的前提下,不同级别的断裂从平行到小角度相交再到大角度相交,对页岩气保存的破坏作用逐渐增强;③断裂活动期次越多、持续时间越长对页岩气后期保存的破坏作用越强。根据断裂期次及活动持续性,可划分为4种类型:①晚燕山期短期活动,保存条件影响较小;②燕山期-早喜马拉雅期断续活动,保存条件受一定影响;③晚燕山期以来持续活动,保存条件破坏严重;④喜马拉雅期以来持续活动,保存条件影响较大。Abstract: The fracturing of the Paleozoic marine shale in the Sichuan Basin and its periphery was studied. The disruptive effects of faulting on shale gas preservation were analyzed based on the comprehensive interpretation of seismic structure, the analysis of fluid inclusions in calcite veins in fractures in shale layers, and the consideration of typical shale gas wells with different gas-bearing properties. Fault level, spatial stacking pattern, stage and duration have an important influence on the preservation conditions of shale gas. (1) The higher the fault level is, the larger the impact. The preservation conditions for shale gas are destroyed in the areas close to the first-level faults (within about 10 km), the second-level faults (within about 5 km), and the third-level faults (within about 2-3 km), but not influenced in the area close to the fourth-level faults. (2) Under the premise of similar fracture density in the well area, when different levels of faults intersect from parallel or small angles to large angles, the damage to shale gas preservation gradually increases. (3) The more fault activity periods and the longer their duration, the greater is the damage to shale gas preservation in the later period. Fault period and activity duration can be divided into 4 types: (1) short-term activity in the late Yanshan period, whose impact on preservation conditions was small; (2) intermittent activity in the Yanshan and early Himalayan periods where preservation conditions were affected to some extent; (3) continuous activity since the late Yanshan period, which caused serious damage to preservation conditions; and (4) continuous activity since the Himalayan period, which had a greater impact on preservation conditions.
-
Key words:
- fluid inclusions /
- fault activity /
- fault grade /
- preservation conditions /
- shale gas /
- Sichuan Basin
-
表 1 四川盆地及周缘五峰组—龙马溪组重点页岩气钻井井区断裂统计
Table 1. Fault features of key shale gas wells in Wufeng-Longmaxi formations, Sichuan Basin and its periphery
构造位置 井号 埋深/m 距一级断裂/km 距二级断裂/km 距三级断裂/km 距四级断裂/km 不同级别断裂叠置方式 压力系数 产量/(104m3·d-1) 南天湖斜坡 TY1井 3 940 10.7 2~3 0~2.30 二、三级与一级断裂45°相交 <0.80 微气 丁山断背斜及斜坡 DY1井 2 050 5.6 0.90 四级与一级断裂平行不相交 0.98 3.40 DY3井 2 270 8.4 0.70 四级与一级断裂小角度不相交 1.08 3.36 DY4井 3 730 9.5 1.65 1.40 三级与二级断裂垂直不相交,三四级断裂垂直相交 1.45 20.56 DY5井 3 810 15.5 1.15 四级与一级断裂大角度不相交 1.55 16.33 DY2井 4 360 17.6 0.10 四级与一级断裂大角度不相交 1.82 10.50 焦石坝箱状背斜 JY1井 2 400 5.8 1.90 三级与二级断裂小角度不相交 1.55 20.30 JY3井 2 450 4.3 2.10 1.50 四级平行三级断裂,三级断裂与二级断裂小角度相交 1.25 11.55 鸭江断鼻 JY5井 3 080 1.2~5.5 1.70 四级与二级断裂小角度不相交,两组二级断裂相交 0.99 4.50 白马向斜 JY6井 3 270 4.8~7.4 0.70 0.70 四级与三级断裂平行,两组二级断裂小角度相交 1.19 6.68 JY7井 3 570 7.3 4.6~5.7 3.70 1.20 各级断裂平行不相交 1.39 3.68 平桥断背斜 JY8井 2 820 1.40~2.00 1.00~1.40 三四级断裂平行不相交 1.56 20.90 屏边断背斜 MY1井 3 100 13.8 0.80 2.40 三四级与二级断裂近垂直相交 <0.80 微气 永福断鼻 YF1井 2 840 1.80 3.90 三四级断裂大角度不相交 含气量2.14 m3/t 仁怀斜坡 RY1井 4 100 12.0 6.00 1.50~2.40 各级断裂平行不相交 <0.80 微气 -
[1] 罗群, 孙宏智. 断裂活动与油气藏保存关系研究[J]. 石油实验地质, 2000, 22(3): 225-231. doi: 10.3969/j.issn.1001-6112.2000.03.007LUO Qun, SUN Hongzhi. Relationship between faulting and the preservation of oil and gas accumulation[J]. Experimental Petroleum Geology, 2000, 22(3): 225-231. doi: 10.3969/j.issn.1001-6112.2000.03.007 [2] 罗兵, 郁飞, 陈亚琳, 等. 四川盆地涪陵地区页岩气层构造特征与保存评价[J]. 石油实验地质, 2018, 40(1): 103-109. doi: 10.11781/sysydz201801103LUO Bing, YU Fei, CHEN Yalin, et al. Structural features and preservation evaluation of shale gas reservoirs in the Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 103-109. doi: 10.11781/sysydz201801103 [3] 柳永军, 赵弟江, 李正宇, 等. 走滑-伸展断裂叠合特征及其控藏作用[J]. 特种油气藏, 2019, 26(2): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902008.htmLIU Yongjun, ZHAO Dijiang, LI Zhengyu, et al. The superposition patterns of strike-slip-extension faults and its effects on hydrocarbon accumulatuon. [J]. Special Oil & Gas Reservoirs, 2019, 26(2): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902008.htm [4] 齐荣. 鄂尔多斯盆地杭锦旗东部断裂特征及对天然气成藏的影响[J]. 特种油气藏, 2019, 26(4): 58-63. doi: 10.3969/j.issn.1006-6535.2019.04.010QI Rong. Fault characterization and its influences on gas accumulation in the eastern Haggin Banner of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 58-63. doi: 10.3969/j.issn.1006-6535.2019.04.010 [5] 吕延防, 马福建. 断层封闭性影响因素及类型划分[J]. 吉林大学学报(地球科学版), 2003, 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htmLÜ Yanfang, MA Fujian. Controlling factors and classification of fault seal[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htm [6] 孙同文, 高喜成, 吕延防, 等. 断裂转换带作为油气侧向、垂向运移通道的研究进展[J]. 石油与天然气地质, 2019, 40(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905006.htmSUN Tongwen, GAO Xicheng, LÜ Yanfang, et al. Research progress in fault transformation zones as lateral or vertical hydrocarbon migration pathways[J]. Oil & Gas Geology, 2019, 40(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905006.htm [7] 李金磊, 尹成, 王明飞, 等. 四川盆地涪陵焦石坝地区保存条件差异性分析[J]. 石油实验地质, 2019, 41(3): 341-347. doi: 10.11781/sysydz201903341LI Jinlei, YIN Cheng, WANG Mingfei, et al. Preservation condition differences in Jiaoshiba area, Fuling, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 341-347. doi: 10.11781/sysydz201903341 [8] 沈传波, 梅廉夫, 徐振平, 等. 四川盆地复合盆山体系的结构构造和演化[J]. 大地构造与成矿学, 2007, 31(3): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200703005.htmSHEN Chuanbo, MEI Lianfu, XU Zhenping, et al. Architecture and tectonic evolution of composite basin-mountain system in Sichuan Basin and its adjacent areas[J]. Geotectonica et Metallogenia, 2007, 31(3): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200703005.htm [9] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htmHU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [10] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htmJIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm [11] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of pre-servation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147 [12] 魏志红. 四川盆地及其周缘五峰组-龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htmWEI Zhihong. Late fugitive emission of shale gas from Wufeng-Longmaxi formation in Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm [13] 柳广弟, 吴孔友, 查明. 断裂带作为油气散失通道的输导能力[J]. 石油大学学报(自然科学版), 2002, 26(1): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201004.htmLIU Guangdi, WU Kongyou, ZHA Ming. Draining capacity of fault zone as a pathway of oil and gas leakage[J]. Journal of the University of Petroleum, China, 2002, 26(1): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201004.htm [14] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htmGUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling Shale Gas Field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm [15] 汪正江, 余谦, 杨平, 等. 川滇黔邻区龙马溪组页岩气富集主控因素与勘探方向[J]. 沉积与特提斯地质, 2018, 38(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201803001.htmWANG Zhengjiang, YU Qian, YANG Ping, et al. The main controlling factors of shale gas enrichment and exploration prospect areas in the Sichuan-Yunnan-Guizhou border areas, southwestern China[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201803001.htm [16] 李忠权, 潘懋, 萧德铭, 等. 四川盆地拉张-挤压构造环境探讨[J]. 北京大学学报(自然科学版), 2001, 37(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200101014.htmLI Zhongquan, PAN Mao, XIAO Deming, et al. Studies of extension-compression tectonic dynamic setting in Sichuan Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200101014.htm [17] 李双建, 李建明, 周雁, 等. 四川盆地东南缘中新生代构造隆升的裂变径迹证据[J]. 岩石矿物学杂志, 2011, 30(2): 225-233. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201102009.htmLI Shuangjian, LI Jianming, ZHOU Yan, et al. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan Basin[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 225-233. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201102009.htm [18] 邱楠生, 秦建中, MCINNES B I A, 等. 川东北地区构造-热演化探讨: 来自(U-Th)/He年龄和Ro的约束[J]. 高校地质学报, 2008, 14(2): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200802012.htmQIU Nansheng, QIN Jianzhong, MCINNES B I A, et al. Tectono-thermal evolution of the northeastern Sichuan Basin: constraints from apatite and zircon (U-Th)/He ages and vitrinite reflectance data[J]. Geological Journal of China Universities, 2008, 14(2): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200802012.htm [19] 罗群. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发, 2010, 37(3): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003010.htmLUO Qun. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003010.htm [20] 王超, 付广, 董英洁. 油气沿不同时期断裂穿过泥岩盖层渗滤散失的地质条件及其识别方法[J]. 现代地质, 2017, 31(2): 348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201702013.htmWANG Chao, FU Guang, DONG Yingjie. Geological conditions and recognition methods of oil-gas leakage out through mudstone caprock along fault in different periods[J]. Geoscience, 2017, 31(2): 348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201702013.htm [21] 付广, 王国民, 黄劲松. 断裂静止期有无输导油气能力的判别方法[J]. 沉积学报, 2008, 26(5): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805021.htmFU Guang, WANG Guomin, HUANG Jinsong. A method judging the existence or not of transporting oil-gas ability of fault in the stillstand period[J]. Acta Sedimentologica Sinica, 2008, 26(5): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805021.htm [22] 伊硕, 黄文辉, 王一刚, 等. 延安以南地区奥陶系碳酸盐岩储层中流体包裹体及烃类物质的油气指示意义[J]. 油气地质与采收率, 2018, 25(6): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201806006.htmYI Shuo, HUANG Wenhui, WANG Yigang, et al. Fluid inclusions and hydrocarbons in Ordovician carbonate reservoirs in the South of Yan'an and its implication for oil and gas[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(6): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201806006.htm [23] 占王忠, 格桑旺堆. 羌塘盆地鄂纵错地区上三叠统储层流体包裹体研究[J]. 断块油气田, 2018, 25(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801011.htmZHAN Wangzhong, KELSANG Wangdu. Fluid inclusion analysis for Ezongcuo area of Upper Triassic Formation in Qiangtang Basin[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801011.htm [24] 李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htmLI Wen, HE Sheng, ZHANG Baiqiao, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale compo-site veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [25] 刘德汉, 肖贤明, 田辉, 等. 含油气盆地中流体包裹体类型及其地质意义[J]. 石油与天然气地质, 2008, 29(4): 491-501. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200804015.htmLIU Dehan, XIAO Xianming, TIAN Hui, et al. Fluid inclusion types and their geological significance in petroliferous basins[J]. Oil & Gas Geology, 2008, 29(4): 491-501. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200804015.htm [26] 宋世骏, 刘森, 梁月霞. 鄂尔多斯盆地西南部长8致密油层油气成藏期次和时期[J]. 断块油气田, 2018, 25(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802002.htmSONG Shijun, LIU Sen, LIANG Yuexia. Timing and chronology of hydrocarbon accumulation phases of Chang 8 tight reservoir in southwest of Ordos Basin[J]. Fault-Block Oil and Gas Field, 2018, 25(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802002.htm [27] 武昱东, 王宗起, 罗金海, 等. 川西南甘洛地区中-新生代构造沉降史分析及对铅锌保存的约束[J]. 地质学报, 2015, 89(8): 1471-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201508010.htmWU Yudong, WANG Zongqi, LUO Jinhai, et al. Characteristics of Meso-Cenozoic tectonic subsidence history and restriction on preservation of Zn-Pb deposit in Ganluo, southwest Sichuan[J]. Acta Geologica Sinica, 2015, 89(8): 1471-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201508010.htm