留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响

卢龙飞 刘伟新 俞凌杰 张文涛 申宝剑 腾格尔

卢龙飞, 刘伟新, 俞凌杰, 张文涛, 申宝剑, 腾格尔. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
引用本文: 卢龙飞, 刘伟新, 俞凌杰, 张文涛, 申宝剑, 腾格尔. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
LU Longfei, LIU Weixin, YU Lingjie, ZHANG Wentao, SHEN Baojian, BORJIGIN Tenger. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
Citation: LU Longfei, LIU Weixin, YU Lingjie, ZHANG Wentao, SHEN Baojian, BORJIGIN Tenger. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363

生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响

doi: 10.11781/sysydz202003363
基金项目: 

国家自然科学基金 U1663202

国家自然科学基金 41972164

国家自然科学基金 U19B6003-02

国家油气重大专项 2016ZX05036002

中国石化科技部项目 P15097

详细信息
    作者简介:

    卢龙飞(1977-), 博士, 高级工程师, 主要从事油气地球化学和非常规油气地质研究。E-mail: lulf.syky@sinopec.com

  • 中图分类号: TE122.1

Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale

  • 摘要: 为研究生物成因硅质页岩成岩演化以及在该过程中页岩物性和孔隙结构变化特征,选取松辽盆地嫩江组蛋白石硅质页岩和四川盆地东部上奥陶统五峰组-下志留统龙马溪组硅质页岩,利用X射线衍射、氦气孔隙度、氮气吸附和高压压汞等手段,开展了页岩矿物相变化、孔隙发育和孔隙结构特征等综合分析。结果显示,生物蛋白石发生脱水和重结晶作用较早,在早成岩阶段即完成了向准晶态蛋白石-CT和晶态石英的转变过程。在蛋白石-A向蛋白石-CT转化过程中,页岩总孔隙度从75%以上快速降低至30%附近,在继续向石英转化过程中孔隙损失速率迅速降低,降幅减小,仅降低了约5%,呈快速和缓慢两段式变化特征。同时,不同类型孔隙的孔体积分布也发生较明显变化,大孔损失较多,微孔损失较小,孔隙组成从初始以大孔和介孔为主逐渐向以介孔和微孔为主转变。生物成因硅质页岩早期成岩阶段机械压实和化学压实(压溶)作用近乎同步进行,对页岩改造作用强,造成页岩孔隙减小的同时,又使页岩的硬度增大,支撑和抗压实能力增强,从而使早期成岩中后期及后续成岩作用的改造和破坏减弱。生物成因硅质页岩早期快速成岩定型是其在成岩中后期与晚期仍然能够保持高孔隙特征的重要原因。

     

  • 图  1  生物蛋白石硅质页岩X射线衍射图谱

    Figure  1.  X-ray diffraction pattern of biogenic opaline siliceous shale

    图  2  蛋白石硅质页岩与川东南五峰组—龙马溪组硅质页岩孔体积—孔径分布

    Figure  2.  Pore size distribution of biogenic opaline siliceous shale and siliceous shale in Wufeng-Longmaxi formations, southeastern Sichuan Basin

    图  3  成岩过程生物蛋白石物相转化序列与页岩孔隙演化特征

    Figure  3.  Sequence of biogenic opal phase transformation and pore evolution characteristics of shale during diagenesis

    表  1  蛋白石硅质岩的孔隙度、孔容和比表面积变化特征

    Table  1.   Porosity, pore volume and surface characteristics of opal siliceous shale

    样品编号 层位 硅质成岩阶段 w(TOC)/% Ro/% 孔隙度/% 孔容/(cm3·g-1) 比表面积/(m2·g-1)
    MH-1 K2n1 蛋白石-A、蛋白石-CT和石英三相共存态 2.72 0.3 55.01 0.258 92.39
    QT-4 K2n1 蛋白石-A、蛋白石-CT和石英三相共存态 1.62 0.3 51.43 0.289 83.89
    NJ-3 K2n1 蛋白石-A、蛋白石-CT和石英三相共存态 3.07 0.3 50.57 0.194 80.94
    NJ-1 K2n1 蛋白石-A、蛋白石-CT和石英三相共存态 3.79 0.3 46.36 0.171 76.59
    JJG-6 K2n1 蛋白石-CT和石英两相共存态 3.39 0.4 44.52 0.098 68.42
    JJG-4 K2n1 蛋白石-CT和石英两相共存态 1.62 0.4 31.20 0.076 55.43
    NH-2 K2n1 蛋白石-CT和石英两相共存态 1.10 0.4 29.59 0.063 46.55
    YJC-10 K2n1 石英单相态 0.99 0.5 28.20 0.047 38.28
    YJC-2 K2n1 石英单相态 4.56 0.5 26.21 0.040 32.73
    DS-3 S1l 石英单相态 5.52 2.3 7.13 0.026 27.77
    DS-5 S1l 石英单相态 6.03 2.3 6.58 0.021 21.84
    下载: 导出CSV
  • [1] 黄志诚, 黄钟瑾, 陈智娜. 下扬子区五峰组火山碎屑岩与放射虫硅质岩[J]. 沉积学报, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm

    HUANG Zhicheng, HUANG Zhongjin, CHEN Zhina. Volcanic rock and radiolarian silicilith of Wufeng Formation in Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm
    [2] 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079

    WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079
    [3] 卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
    [4] 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm

    GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm
    [5] 魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异: 以四川盆地焦石坝地区五峰组-龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm

    WEI Zhihong, WEI Xiangfeng. Comparison of gas-bearing property between different pore types of shale: a case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
    [6] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, TENGER, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [7] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm
    [8] COMER J B. Reservoir characteristics and gas production potential of Woodford shale in the southern Midcontinent[EB/OL]. [2012-08-12]. https://scholarworks.iu.edu/dspace/handle.
    [9] BOWKER K A. Developments of the Barnett shale play, Fort Worth Basin[C]//LAW B E, WILSON M. Innovative gas exploration concepts symposium: Rocky Mountain Association of Geologists and Petroleum Technology Transfer Council. Denver, Colorado, 2002.
    [10] LEE D S, HERMAN J D, ELSWORTH D, et al. A critical evaluation of unconventional gas recovery from the Marcellus shale, northeastern United States[J]. KSCE Journal of Civil Engineering, 2011, 15(4): 679.
    [11] MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett shale, Fort Worth Basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
    [12] 陈红宇, 卢龙飞, 刘伟新, 等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341

    CHEN Hongyu, LU Longfei, LIU Weixin, et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petro-leum Geology & Experiment, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341
    [13] 李双建, 肖开华, 汪新伟, 等. 南方志留系碎屑矿物热年代学分析及其地质意义[J]. 地质学报, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm

    LI Shuangjian, XIAO Kaihua, WANG Xinwei, et al. Thermochronology of detrital minerals in the Silurian strata from Southern China and its geological implications[J]. Acta Geologica Sinica, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm
    [14] 曹环宇, 朱传庆, 邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm

    CAO Huanyu, ZHU Chuanqing, QIU Nansheng. Maximum paleotemperature of main paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm
    [15] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm

    CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
    [16] ALEXANDRE A, MEUNIER J D, LLORENS E, et al. Methodological improvements for investigating Silcrete Formation: petrography, FT-IR and oxygen isotope ratio of Silcrete Quartz Cement, Lake Eyre Basin (Australia)[J]. Chemical Geology, 2004, 211(3/4): 261-274.
    [17] YILMAZ H, KACMAZ H. Distinguishing opaline silica polymorphs from α-cristobalite in Gedikler bentonite (Uşak, Turkey)[J]. Applied Clay Science, 2012, 62-63: 80-86.
    [18] TADA R. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement[C]//EINSELE G, RICKEN W, SEILACHER A, et al. Cycles and events in stratigraphy. Berlin, Germany: Springer, 1991: 480-491.
    [19] WILLIAMS L A, CRERAR D A. Silica diagenesis, Ⅱ. General mechanisms[J]. Journal of Sedimentary Petrology, 1985, 55(3): 312-321.
    [20] MATHENEY R K, KNAUTH L P. New isotopic temperature estimates for early silica diagenesis in bedded cherts[J]. Geology, 1993, 21(6): 519-522.
    [21] BOTZ R, BOHRMANN G. Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: evidence from oxygen isotopes[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 612-617.
    [22] BJØRLYKKE K. Petroleum geoscience: from sedimentary environments to rock physics[M]. Berlin, Heidelberg: Springer-Verlag, 2010.
    [23] WORDEN R H, FRENCH M W, MARIANI E. Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones[J]. Geology, 2012, 40(2): 179-182.
    [24] BLATT H, MIDDLETON G V, MURRAY R C. Origin of sedimentary rocks[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1980: 782.
    [25] ITAKI T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea[J]. Marine Micropaleontology, 2003, 47(3/4): 253-270.
    [26] ISAACS C M. Porosity reduction during diagenesis of the Monterey Formation, Santa Barbara coastal area, California[C]//GARRISON R E, DOUGLAS R G. The Monterey Formation and related siliceous rocks of California. Los Angeles: SEPM Pacific Section, 1981: 257-271.
    [27] VOLPI V, CAMERLENGHI A, HILLENBRAND C D, et al. Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula[J]. Basin Research, 2003, 15(3): 339-363.
    [28] KELLER M A, ISAACS C M. An evaluation of temperature scales for silica diagenesis in diatomaceous sequences including a new approach based on the Miocene Monterey Formation, California[J]. Geo-Marine Letters, 1985, 5: 31-35.
    [29] NOBES D C, LANGSETH M G, KURAMOTO S, et al. Comparison and correlation of physical property results from Japan Sea Basin and rise sites, legs 127 and 128, 1987[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1992, 127/128: 275-1296.
    [30] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [31] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
    [32] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
    [33] HURD D C. Physical and chemical properties of siliceous skeletons[C]//ASTON S R. Silicon geochemistry and biogeochemistry. London: Academic Press, 1983: 187-244.
    [34] APLIN A C, MACQUAKER J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [35] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  147
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回