留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流体吸入实验的页岩纳米孔隙连通性分析方法

张文涛 胡文瑄 鲍芳 俞凌杰 范明 张庆珍

张文涛, 胡文瑄, 鲍芳, 俞凌杰, 范明, 张庆珍. 基于流体吸入实验的页岩纳米孔隙连通性分析方法[J]. 石油实验地质, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415
引用本文: 张文涛, 胡文瑄, 鲍芳, 俞凌杰, 范明, 张庆珍. 基于流体吸入实验的页岩纳米孔隙连通性分析方法[J]. 石油实验地质, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415
ZHANG Wentao, HU Wenxuan, BAO Fang, YU Lingjie, FAN Ming, ZHANG Qingzhen. A method for analyzing nanopore connectivity of shale using a fluid suction experiment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415
Citation: ZHANG Wentao, HU Wenxuan, BAO Fang, YU Lingjie, FAN Ming, ZHANG Qingzhen. A method for analyzing nanopore connectivity of shale using a fluid suction experiment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415

基于流体吸入实验的页岩纳米孔隙连通性分析方法

doi: 10.11781/sysydz202003415
基金项目: 

国家自然科学基金 U1663202

国家自然科学基金 41690133

国家油气重大专项 2017ZX05036002

详细信息
    作者简介:

    张文涛(1982-), 男, 副研究员, 主要从事页岩油气地质研究。E-mail: zhangwt.syky@sinopec.com

  • 中图分类号: TE135

A method for analyzing nanopore connectivity of shale using a fluid suction experiment

  • 摘要: 提出了基于含示踪剂流体吸入实验的页岩连通性分析方法。通过真空吸入的方式使氯金酸钠溶液进入页岩孔隙中,并使之转化为固态金,将完成实验后的样品表面进行氩离子抛光处理,并在场发射扫描电镜下观察金的分布,可以获得页岩中连通孔隙在纳米尺度上的特征。根据四川盆地上奥陶统五峰组-下志留统龙马溪组2个岩心样品的实验结果,认为其连通网络可分为三级系统。有机质内部孔隙连通性与孔隙发育程度有关,喉道半径小,流动效率不高。粒缘缝主要分布在颗粒矿物边缘、有机质与矿物之间以及片状黏土矿物边缘,是流体流动的有利通道,有机质孔通过粒缘缝相互连通。微裂缝的发育能够很好地改善页岩孔隙的连通性,是流体流动的优势通道。页岩连通性具有各向异性,页岩孔隙在平行层理方向的连通性大大优于垂直层理方向。

     

  • 图  1  流体吸入装置示意

    Figure  1.  Schematic diagram of fluid suction device

    图  2  扫描电镜下实验样品的孔隙特征

    a,b.样品WY11-9-8;c,d.样品JY11-13

    Figure  2.  Characteristics of pores in samples using SEM

    图  3  四川盆地五峰组—龙马溪组页岩样品WY11-9-8的连通孔隙特征

    Figure  3.  Characteristics of connected pores in sample WY11-9-8 in Wufeng-Longmaxi formations in Sichuan Basin

    图  4  四川盆地五峰组—龙马溪组页岩样品JY11-13的连通孔隙特征

    Figure  4.  Characteristics of connected pores in sample JY11-13 in Wufeng-Longmaxi formations in Sichuan Basin

    图  5  四川盆地五峰组—龙马溪组页岩样品WY11-9-8的FIB-SEM三维微观结构

    蓝色为提取的有机质,红色为提取的孔隙

    Figure  5.  3D microstructure of sample WY11-9-8 in Wufeng-Longmaxi formations in Sichuan Basin using FIB-SEM

    表  1  实验样品基本信息

    Table  1.   Basic sample information

    样品号 地区 深度/m w(TOC)/% 孔隙度/% 视密度/(g·mL-1) 矿物组成/%
    黏土 石英 钾长石 斜长石 方解石 白云石 黄铁矿 硬石膏
    WY11-9-8 威远 3 755.50 4.34 7.69 2.57 28 41 1 6 20 4
    JY11-13 焦石坝 2 325.35 4.10 6.75 2.55 41 40 1 5 3 5 4 1
    下载: 导出CSV
  • [1] 张艳, 张春雷, 阎娜, 等. 基于贝叶斯分类的图像分析方法在孔隙结构参数表征中的应用: 以姬塬油田长9油层组为例[J]. 油气地质与采收率, 2018, 25(3): 61-67, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803009.htm

    ZHANG Yan, ZHANG Chunlei, YAN Na, et al. Application of image analysis based on Bayesian classification in characterization of pore structure parameters: a case study of Chang9 oil layer in Jiyuan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 61-67, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803009.htm
    [2] 王濡岳, 尹帅, 龚大建, 等. 下寒武统页岩孔隙结构与分形特征[J]. 断块油气田, 2018, 25(5): 589-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805010.htm

    WANG Ruyue, YIN Shuai, GONG Dajian, et al. Pore structure and fractal characteristics of Lower Cambrian shales[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 589-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805010.htm
    [3] 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm

    XIAO Dianshi, ZHAO Renwen, YANG Xiao, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm
    [4] 欧阳思琪, 孙卫, 黄何鑫. 多方法协同表征特低渗砂岩储层全孔径孔隙结构: 以鄂尔多斯盆地合水地区砂岩储层为例[J]. 石油实验地质, 2018, 40(4): 595-604. doi: 10.11781/sysydz201804595

    OUYANG Siqi, SUN Wei, HUANG Hexing. Multi-method synergistic characterization of total pore structure of extra-low permeabi-lity sandstone reservoirs: case study of the Heshui area of Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 595-604. doi: 10.11781/sysydz201804595
    [5] 赵日新, 卢双舫, 薛海涛, 等. 扫描电镜分析参数对定量评价页岩微观孔隙的影响[J]. 石油与天然气地质, 2019, 40(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm

    ZHAO Rixin, LU Shuangfang, XUE Haitao, et al. Effect of SEM parameters on quantitative evaluation of shale micropores[J]. Oil & Gas Geology, 2019, 40(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm
    [6] 孙超, 姚素平. 页岩油储层孔隙发育特征及表征方法[J]. 油气地质与采收率, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm

    SUN Chao, YAO Suping. Pore structure and characterization methods of shale oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm
    [7] 马海洋, 夏遵义, 温庆志, 等. 渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J]. 石油实验地质, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149

    MA Haiyang, XIA Zunyi, WEN Qingzhi, et al. Micro-pore characte-ristics of shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149
    [8] KLAVER J, HEMES S, HOUBEN M, et al. The connectivity of pore space in mudstones: insights from high-pressure Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry[J]. Geofluids, 2015, 15(4): 577-591. doi: 10.1111/gfl.12128
    [9] KLAVER J M, SCHMATZ J, KROOSS B, et al. Porosity and pore connectivity in immature and artificially matured source rock using BIB-SEM, WMI and MIP[C]//Proceedings of the Fifth EAGE Shale Workshop. [s. l. ]: European Association of Geoscientists & Engineers, 2016.
    [10] KING H E Jr, EBERLE A P R, WALTERS C C, et al. Pore architecture and connectivity in gas shale[J]. Energy & Fuels, 2015, 29(3): 1375-1390.
    [11] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]//North American Unconventional Gas Conference and Exhibition. The Woodlands, TX, USA: SPE, 2011.
    [12] KELLER L M, SCHUETZ P, ERNI R, et al. Characterization of multi-scale microstructural features in Opalinus Clay[J]. Microporous and Mesoporous Materials, 2013, 170: 83-94. doi: 10.1016/j.micromeso.2012.11.029
    [13] 赵斌, 尚彦军. 基于复杂网络理论的页岩纳米孔隙连通性表征[J]. 工程地质学报, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm

    ZHAO Bin, SHANG Yanjun. Characterizing connectivity of nano-sized pores of shale based on complex network theory[J]. Journal of Engineering Geology, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm
    [14] 孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603024.htm

    SUN Liang, WANG Xiaoqi, JIN Xu, et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603024.htm
    [15] HU Qinhong, EWING R P, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
    [16] 吕海刚, 于萍, 闫建萍, 等. 四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J]. 天然气地球科学, 2015, 26(8): 1556-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508017.htm

    LÜ Haigang, YU Ping, YAN Jianping, et al. Experimental investigation of water absorption and its significance on pore network connectivity in mudstone from Silurian Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(8): 1556-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508017.htm
    [17] HU Qinhong, EWING R P, ROWE H D. Low nanopore connectivity limits gas production in Barnett Formation[J]. Journal of Geophy-sical Research: Solid Earth, 2015, 120(12): 8073-8087.
    [18] 胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm

    HU Qinhong, LIU Huimin, LI Maowen, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm
    [19] YANG Rui, HAO Fang, HE Sheng, et al. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J]. Marine and Petroleum Geology, 2017, 84: 225-242.
    [20] VEGA B, DUTTA A, KOVSCEK A R. CT imaging of low-permeability, dual-porosity systems using high X-ray contrast gas[J]. Transport in Porous Media, 2014, 101(1): 81-97.
    [21] MAYO S, JOSH M, NESTERETS Y, et al. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal[J]. Fuel, 2015, 154: 167-173.
    [22] HILDENBRAND A, URAI J L. Investigation of the morphology of pore space in mudstones: first results[J]. Marine and Petro-leum Geology, 2003, 20(10): 1185-1200.
    [23] DESBOIS G, URAI J L, HEMES S, et al. Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany)[J]. Journal of Petroleum Science and Engineering, 2016, 140: 128-148.
    [24] 张林彦, 包友书, 习成威. 东营凹陷古近系泥页岩孔隙结构特征及连通性[J]. 新疆石油地质, 2018, 39(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201802003.htm

    ZHANG Linyan, BAO Youshu, XI Chengwei. Pore structure characteristics and pore connectivity of Paleogene shales in Dong-ying Depression[J]. Xinjiang Petroleum Geology, 2018, 39(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201802003.htm
    [25] JAIN A, ONG S P, HAUTIER G, et al. The materials project: a materials genome approach to accelerating materials innovation[J]. AIP Materials, 2013, 1: 1-11. doi: 10.1063/1.4812323&mimeType=pdf&containerItemId=content/aip/journal/aplmater
    [26] BARTH T, RIIS M. Interactions between organic acids anions in formation waters and reservoir mineral phases[J]. Organic Geochemistry, 1992, 19(4/6): 455-482.
    [27] ZHANG Wentao, HU Wenxuan, BORJIGIN Tenger, et al. Pore characteristics of different organic matter in black shale: a case study of the Wufeng-Longmaxi formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43.
    [28] ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Nano-scale pore characteristics of organic-rich Wufeng and Longmaxi shales in the Sichuan Basin, China[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6721-6731.
    [29] YANG Rui, HE Sheng, YI Jizheng, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45.
    [30] 蒲泊伶, 董大忠, 耳闯, 等. 川南地区龙马溪组页岩有利储层发育特征及其影响因素[J]. 天然气工业, 2013, 33(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312006.htm

    PU Boling, DONG Dazhong, ER Chuang, et al. Favorable reservoir characteristics of the Longmaxi shale in the southern Sichuan Basin and their influencing factors[J]. Natural Gas Industry, 2013, 33(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312006.htm
    [31] 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39(3): 472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm

    HE Chencheng, HE Sheng, GUO Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm
    [32] 葛明娜, 庞飞, 包书景. 贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制: 以安页1井为例[J]. 石油实验地质, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023

    GE Mingna, PANG Fei, BAO Shujing. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology & Experiment, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  141
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-08
  • 修回日期:  2020-04-13
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回