Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin
-
摘要: 我国南方海相页岩大多处于高-过熟演化阶段,无法再现地质历史过程中孔隙的演化过程。选取欧洲地区波罗的海盆地上奥陶统页岩开展了近地质条件的室内热压模拟实验,以期揭示海相页岩孔隙的演化规律和赋存状态。结合实验样品的有机岩石学特征、模拟产物的定量化统计和扫描电镜微区分析,系统阐述了模拟实验页岩孔隙在有机质熟化过程中的演化特征和形成机理。实验条件下,页岩整体孔隙的发育程度随有机质热演化程度的增加而提高,孔隙之间趋于连通,由初始的孔隙不发育状态逐渐演变为复杂交错的孔隙网络。根据孔隙的形态和成因,将有机孔和无机矿物孔细分为8类:海绵状有机孔、有机质收缩孔和气泡状有机孔;铸膜孔、溶蚀孔、矿物粒间孔、黏土矿物层间孔和改造矿物孔。受有机显微组分的差异、有机质的转化和油气初次运移的影响,有机孔的分布表现出较强的非均质性,无机矿物孔的发育呈现出阶段性。孔隙的有效保存问题在高演化阶段页岩气勘探过程中需要重点关注。Abstract: Most of the marine shale in South China is highly over mature and the pore evolution history cannot be determined. The Upper Ordovician shale in the Baltic Basin in Europe was selected to conduct a laboratory thermal-pressure simulation experiment to emulate geological conditions in order to reveal the evolution and distribution of marine shale pores. The evolution characteristics and formation mechanism of the experimental shale pores during the maturation of organic matter were systematically explained based on the organic petrological characteristics of the raw shale samples, the quantitative statistics of the simulated products, and the scanning electron microscopy analysis. The development of the overall shale pores increases with the increase of the thermal evolution of organic matter. The pores tend to communicate with each other, and gradually evolve from the initial undeveloped state to a complex and interlaced pore network. Organic and inorganic pores are subdivided into 8 categories according to their morphology and origin: spongy organic matter (OM), shrinkage OM, bubble OM, mold, mineral dissolution, intergranular, clay mineral interlayer and modified mineral pores. The transformation degree of organic matter and the primary migration of oil and gas are influenced by the difference of organic macerals. The distribution of organic matter pores showed a strong heterogeneity, and the development of inorganic mineral pores occurred in stages. The effective preservation of pores needs special attention during the shale gas exploration in the high evolution stage.
-
Key words:
- marine shale /
- thermal simulation experiment /
- SEM /
- pore evolution /
- organic macerals
-
表 1 样品热压模拟实验参数设计
Table 1. Design of parameters for thermal-pressure simulation experiment
样品编号 模拟埋深/m 模拟温度/℃ 静岩压力/MPa 正常流体压力/MPa 控制流体压力/MPa 古地温/℃ LT-250 2 000 250 50.0 18.0 42.5 85 LT-325 3 500 325 87.5 35.0 74.4 130 LT-350 4 000 350 100.0 40.0 85.0 145 LT-400 4 500 400 112.5 45.0 95.6 160 LT-450 5 500 450 137.5 55.0 116.9 190 LT-550 6 200 550 155.0 62.0 131.8 211 表 2 热模拟页岩有机地球化学参数
Table 2. Organic geochemical parameters of thermal simulated shale
样品编号 EqVRo/% w(TOC)/% S1/(mg·g-1) S2/(mg·g-1) S3/(mg·g-1) Tmax/℃ IH/(mg·g-1) IO/(mg·g-1) LT-250 0.8 5.22 1.90 13.20 0.32 445 253 6 LT-325 0.9 4.60 1.57 12.19 0.47 450 265 10 LT-350 1.3 3.85 1.64 8.40 0.46 460 218 12 LT-400 1.8 2.73 0.34 0.64 0.25 488 23 9 LT-450 2.5 3.70 0.20 0.11 0.42 607 3 11 LT-550 3.7 3.66 0.16 0.05 0.54 / 1 15 注:EqVRo非实测数据,样品LT-250与原始页岩EqVRo相当,其余为煤样在同等条件下的模拟实验结果。 -
[1] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htmWANG Zhigang. Breakthrough of fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm [2] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htmZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm [3] 聂海宽, 张金川. 页岩气储层类型和特征研究: 以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: a case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001 [4] 熊亮. 川南威荣页岩气田五峰组-龙马溪组页岩沉积相特征及其意义[J]. 石油实验地质, 2019, 41(3): 326-332. doi: 10.11781/sysydz201903326XIONG Liang. Characteristics and significance of sedimentary facies of Wufeng-Longmaxi formation shale in Weirong Shale Gas Field, southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 326-332. doi: 10.11781/sysydz201903326 [5] 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htmWANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm [6] 张奥博, 汤达祯, 陶树, 等. 中美典型含油气页岩地质特征及开发现状[J]. 油气地质与采收率, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htmZHANG Aobo, TANG Dazhen, TAO Shu, et al. Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm [7] 申浩冉, 丁文龙, 谷阳, 等. 黔北凤冈地区龙马溪组页岩孔隙结构特征[J]. 断块油气田, 2019, 26(04): 480-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904016.htmSHEN Haoran, DING Wenlong, GU Yang, et al. Pore structure characteristics of Longmaxi Formation shale in Fenggang area, northern Guizhou[J]. Fault-Block Oil and Gas Field, 2019, 26(04): 480-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904016.htm [8] 彭钰洁, 刘鹏, 吴佩津. 页岩有机质热演化过程中孔隙结构特征研究[J]. 特种油气藏, 2018, 25(5): 141-145. doi: 10.3969/j.issn.1006-6535.2018.05.027PENG Yujie, LIU Peng, WU Peijin. Pore structure characterization of shale organic matter during thermal evolution[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 141-145. doi: 10.3969/j.issn.1006-6535.2018.05.027 [9] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092 [10] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061 [11] POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744. doi: 10.1306/03051514151 [12] 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htmWU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Deve-lopment, 2015, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm [13] 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htmMA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm [14] 张毅, 胡守志, 廖泽文, 等. 基于压机热模拟实验的页岩孔隙演化特征[J]. 地球科学, 2019, 44(3): 983-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903025.htmZHANG Yi, HU Shouzhi, LIAO Zewen, et al. Shale pore evolution characteristics based on semi-closed pyrolysis experiment[J]. Earth Science, 2019, 44(3): 983-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903025.htm [15] 申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480SHEN Baojian, YANG Yunfeng, TENGER, et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480 [16] 郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation expe-riment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296 [17] GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological features and reservoiring mode of shale gas reservoirs in Longmaxi Formation of the Jiaoshiba area[J]. Acta Geologica Sinica, 2014, 88(6): 1811-1821. [18] 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htmMA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompre-ssion simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentolo-gica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm [19] LANDIS C R, CASTAÑO J R. Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22(1): 137-149. [20] JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. [21] BECHTEL A, JIA Jianliang, STROBL S A I, et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): implications from geochemical analysis[J]. Organic Geochemistry, 2012, 46: 76-95. [22] 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htmJIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morpholo-gical structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm [23] 谢小敏, 腾格尔, 仰云峰, 等. Leica QWin_V3图像处理软件在烃源岩有机岩石学定量分析中的应用[J]. 石油实验地质, 2013, 35(4): 468-472. doi: 10.11781/sysydz201304468XIE Xiaomin, TENGER, YANG Yunfeng, et al. Application of Leica QWin_V3 image analysis software in organic petrologic quantitative study[J]. Petroleum Geology & Experiment, 2013, 35(4): 468-472. doi: 10.11781/sysydz201304468 [24] 熊波, 李贤庆, 马安来, 等. 全岩显微组分定量统计及其在烃源岩评价中的应用[J]. 江汉石油学院学报, 2001, 23(3): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200103004.htmXIONG Bo, LI Xianqing, MA Anlai, et al. Quantitative statistics of whole rock macerals and its application in evaluating source rocks[J]. Journal of Jianghan Petroleum Institute, 2001, 23(3): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200103004.htm [25] KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190: 3-28. [26] KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. [27] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. [28] 郭慧娟, 王香增, 张丽霞, 等. 抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义[J]. 地球化学, 2014, 43(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404011.htmGUO Huijuan, WANG Xiangzeng, ZHANG Lixia, et al. Adsorption of N2 and CO2 on mature shales before and after extraction and its implication for investigations of pore structures[J]. Geochimica, 2014, 43(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404011.htm [29] LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore deve-lopment in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geoche-mistry, 2015, 87: 119-132. [30] 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901LI Chuxiong, XIAO Qilin, CHEN Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901 [31] XIONG Yongqiang, JIANG Wenmin, WANG Xiaotao, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine and Petroleum Geology, 2016, 78: 70-75. [32] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. [33] CHEN Ji, XIAO Xianming. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. [34] KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM pore characterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J]. International Journal of Coal Geology, 2016, 158: 78-89. [35] XI Zhaodong, TANG Shuheng, WANG Jing, et al. Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: insights from gas adsorption and mercury intrusion[J]. International Journal of Coal Geology, 2018, 200: 87-102. [36] KUILA U, PRASAD M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362.