Reservoir characteristics of marine-continental shale gas in Upper Permian Longtan Formation, western Guizhou province
-
摘要: 为研究上二叠统龙潭组海陆交互相页岩气储层发育特征,基于黔西地区龙潭组参数井钻井资料,系统采集泥页岩样品,运用X-衍射分析、有机地化、扫描电镜、氮吸附、含气量测定及等温吸附等实验手段,开展储层特征研究。该区龙潭组泥页岩具有单层薄、层数多、总厚大的特点,矿物成分主要为黏土矿物和石英,黏土矿物含量较高;干酪根显微组分主体上为镜质组,均为Ⅲ型干酪根,有机碳含量整体上大于3.0%,镜质体反射率(Ro)平均为1.01%,有机质成熟度偏低;储层整体上为超低孔、超低渗,孔隙类型为粒间孔、粒内孔、有机质孔和微裂缝,发育大量纳米级孔隙,以中孔为主,主要为细颈广体的墨水瓶型孔和狭缝型孔,比表面积和总孔体积较大,孔隙分形维数大,相关系数高,表明泥页岩表面粗糙程度大,连通性差,非均质性强。泥页岩现场解吸总含气量较高,吸附性能较强,且互层的煤层含气量高,资源潜力较大;具备良好的页岩气发育地质条件和富集空间,可选取有效的储层改造技术进行合层开采。Abstract: The reservoir characteristics of marine-continental shale gas in the Upper Permian Longtan Formation in the western Guizhou province were studied using X-ray diffraction, organic geochemistry, scanning electron microscopy, nitrogen adsorption, gas content determination and isothermal adsorption analyses of shale samples from some characteristic wells. The shale in the Longtan Formation in the study area has a large overall thickness, but there are many layers and each layer is thin. The clay mineral content is the highest, followed by the quartz content. The vitrinite group is dominant in the kerogens, which are mainly of type Ⅲ. The TOC content is generally greater than 3.0%. The Ro value averages 1.01%, showing a relatively lower maturity, mainly at the gas generation peak. The reservoir has ultra-low porosity and ultra-low permeability. Intergranular, intragranular and organic pores as well as micro-fractures were observed. A large number of nano-scale pores and fractures were present. Meso-pores are dominant, shaped like narrow-necked and wide-body ink bottles or narrow pores. Large specific surface area, total pore volume, pore fractal dimension and correlation coefficient indicate that the shale has a rough surface, poor connectivity, and strong heterogeneity. The on-site analysis of shale finds high total gas content and strong adsorption, and the interbedded coal seams show high gas content, indicating a large resource potential. The geological conditions and enrichment space are favorable for shale gas in the study area, and effective reservoir reconstruction technology can be selected for coalbed mining.
-
表 1 黔西地区龙潭组泥页岩测试样品基本情况
Table 1. Information of shale test samples from Longtan Formation in western Guizhou province
样品编号 井名 岩性 w(TOC)/% Ro/% 孔隙度/% 渗透率/10-3μm2 吸附气含量/(m3•t-1) PG-1 HV-2 深灰色粉砂质泥岩 1.23 0.94 PG-2 HV-2 黑色含碳泥岩 5.20 1.05 1.55 2.08 PG-3 HV-2 深灰色粉砂质泥岩 1.86 1.28 2.26 0.000 878 PG-4 HV-2 灰黑色泥岩 3.12 0.89 PG-5 JV-3 深灰色泥岩 4.41 0.92 0.67 0.000 322 2.45 PG-6 JV-3 灰黑色含碳页岩 7.99 0.90 3.09 PG-7 JV-3 深灰色页岩 2.08 0.87 7.15 - 3.51 PG-8 JV-3 黑色碳质页岩 8.64 1.02 PG-9 JV-3 黑色碳质页岩 5.86 0.99 3.02 0.000 447 PG-10 YV-2 深灰色粉砂质泥岩 3.88 1.09 3.39 0.001 065 PG-11 YV-2 灰黑色粉砂质泥岩 6.53 1.22 4.19 - 3.53 PG-12 YV-2 深灰色粉砂质泥岩 2.75 1.06 PG-13 YV-2 深灰色泥岩 3.91 1.12 PG-14 YV-2 深灰色泥岩 4.51 1.08 4.41 PG-15 YV-3 深灰色泥岩 3.67 1.04 PG-16 YV-3 深灰色粉砂质泥岩 4.19 1.09 PG-17 YV-3 灰黑色泥岩 2.90 0.68 2.95 PG-18 YV-3 深灰色粉砂质泥岩 3.15 0.96 表 2 黔西地区龙潭组岩心样品孔隙结构参数
Table 2. Pore structure parameters of core samples from Longtan Formation in western Guizhou province
参数 PG-2 PG-3 PG-9 PG-10 PG-12 PG-13 比表面积/(m2•g-1) 9.366 11.285 32.691 11.764 31.183 21.879 总孔体积/(m3•g-1) 0.007 75 0.015 00 0.011 90 0.024 40 0.010 30 0.005 41 平均孔直径/nm 4.42 5.92 3.10 8.46 2.87 2.72 表 3 基于氮气吸附法的泥页岩微观孔隙分形维数
Table 3. Fractal dimensions of micro pores in shale based on nitrogen adsorption
样品编号 D1拟合方程 D1 相关系数R2 D2拟合方程 D2 相关系数R2 PG-2 y=-0.164 4x+1.152 2.835 6 0.975 9 y =-0.232 6x+1.118 2 2.767 4 0.995 1 PG-3 y=-0.331 1x+0.76 2.668 9 0.982 9 y=-0.431 2x+0.659 9 2.568 8 0.999 7 PG-9 y=-0.103 6x+2.364 5 2.896 4 0.988 1 y=-0.159 7x+2.353 2 2.840 3 0.981 6 PG-10 y=-0.275 3x+1.911 2.724 7 0.978 9 y=-0.420 8x+1.822 2 2.579 2 0.995 6 PG-12 y=-0.082 9x+2.311 5 2.917 1 0.981 2 y=-0.141 7x+2.295 5 2.858 3 0.979 7 PG-13 y=-0.074 4x+1.946 2 2.925 6 0.993 2 y=-0.136 3x+1.937 2.863 7 0.967 9 -
[1] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [2] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htmZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm [3] 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40(6): 1247-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906009.htmPANG Xiaoting, CHEN Guohui, XU Chenxi, et al. Quantitative evaluation of adsorbed and free gas and their mutual conversion in Wufeng-Longmaxi shale, Fuling area[J]. Oil & Gas Geo-logy, 2019, 40(6): 1247-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906009.htm [4] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htmNIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [5] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htmMA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm [6] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5): 1-13. doi: 10.3969/j.issn.2095-1426.2019.05.001FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1-13. doi: 10.3969/j.issn.2095-1426.2019.05.001 [7] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htmGUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 20199(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm [8] 朱汉卿, 贾爱林, 位云生, 等. 昭通示范区龙马溪组页岩微观孔隙结构特征及吸附能力[J]. 油气地质与采收率, 2018, 25(4): 1-6. doi: 10.13673/j.cnki.cn37-1359/te.2018.04.001ZHU Hanqing, JIA Ailin, WEI Yunsheng, et al. Characteristics of microscopic pore structure and methane adsorption capacity of shale in the Longmaxi Formation in the Zhaotong area[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 1-6. doi: 10.13673/j.cnki.cn37-1359/te.2018.04.001 [9] 王香增. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htmWANG Xiangzeng. Advances in unconventional gas exploration and development of Yanchang Petroleum Group[J]. Acta Petrolei Sinica, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htm [10] 王中鹏, 张金川, 孙睿, 等. 西页1井龙潭组海陆过渡相页岩含气性分析[J]. 地学前缘, 2015, 22(2): 243-250. doi: 10.13745/j.esf.2015.02.022WANG Zhongpeng, ZHANG Jinchuan, SUN Rui, et al. The gas-bearing characteristics analysis of the Longtan Formation transitional shale in well Xiye 1[J]. Earth Science Frontiers, 2015, 22(2): 243-250. doi: 10.13745/j.esf.2015.02.022 [11] 郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(5): 535-540. doi: 10.11781/sysydz201505535GUO Shaobin, FU Juanjuan, GAO Dan, et al. Research status and prospects for marine-continental shale gases in China[J]. Petroleum Geology & Experiment, 2015, 37(5): 535-540. doi: 10.11781/sysydz201505535 [12] 曾秋楠, 张交东, 于炳松, 等. 太康隆起上古生界海陆交互相页岩气地质条件分析[J]. 特种油气藏, 2019, 26(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903009.htmZENG Qiunan, ZHANG Jiaodong, YU Bingsong, et al. Shale gas geology analysis of the Upper Paleozoic marine-continental inte-raction facies in Taikang uplift[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903009.htm [13] 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响: 以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htmCAO Taotao, LIU Guangxiang, CAO Qinggu, et al. Influence of maceral composition on organic pore development in shale: a case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm [14] 彭艳霞, 郭少斌, 马啸. 贵州龙潭组海陆交互相页岩气评价[J]. 特种油气藏, 2018, 25(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201804002.htmPENG Yanxia, GUO Shaobin, MA Xiao. Evaluation on the paralic shale gas of Longtan Formation in Guizhou[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201804002.htm [15] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京: 地质出版社, 1987.Guizhou Bureau of Geology and Mineral Resources. Regional geology of Guizhou Province[M]. Beijing: Geological Publishing House, 1987. [16] 易同生, 高为. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报, 2018, 43(6): 1553-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806007.htmYI Tongsheng, GAO Wei. Reservoir formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coal-bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society, 2018, 43(6): 1553-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806007.htm [17] 邵龙义, 高彩霞, 张超, 等. 西南地区晚二叠世层序-古地理及聚煤特征[J]. 沉积学报, 2013, 31(5): 856-866. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305011.htmSHAO Longyi, GAO Caixia, ZHANG Chao, et al. Sequence-palaeogeography and coal accumulation of Late Permian in Southwestern China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 856-866. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305011.htm [18] 张鹏, 黄宇琪, 杨军伟, 等. 黔西北龙潭组页岩吸附能力主控因素分析[J]. 断块油气田, 2019, 26(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htmZHANG Peng, HUANG Yuqi, YANG Junwei, et al. Main controlling factors of shale adsorption capacity of Longtan Formation in northwest Guizhou[J]. Fault-Block Oil and Gas Field, 2019, 26(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htm [19] 曹涛涛, 邓模, 刘虎, 等. 川南-黔北地区龙潭组页岩气成藏条件分析[J]. 特种油气藏, 2018, 25(3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803002.htmCAO Taotao, DENG Mo, LIU Hu, et al. Shale gas accumulation condition analysis of Longtan Formation in southern Sichuan-northern Guizhou[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803002.htm [20] 郭旭升. 涪陵页岩气田焦石坝区块富集机理与勘探技术[M]. 北京: 科学出版社, 2014.GUO Xusheng. Accumulation mechanism and exploration technology of Jiaoshiba block in Fuling shale gas field[M]. Beijing: Science Press, 2014. [21] 李昌伟, 陶士振, 董大忠, 等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学, 2015, 26(5): 986-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505023.htmLI Changwei, TAO Shizhen, DONG Dazhong, et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015, 26(5): 986-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505023.htm [22] 聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904003.htmNIE Haikuan, TANG Xuan, BIAN Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904003.htm [23] 何希鹏, 齐艳平, 何贵松, 等. 渝东南构造复杂区常压页岩气富集高产主控因素再认识[J]. 油气藏评价与开发, 2019, 9(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905004.htmHE Xipeng, QI Yanping, HE Guisong, et al. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing[J]. Reservoir Evaluation and Development, 2019, 9(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905004.htm [24] 赵静. 陆相页岩气成藏条件分析: 以松辽盆地南部S洼槽为例[J]. 断块油气田, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htmZHAO Jing. Accumulation conditions of shale gas in continental facies: taking S Depression of Songliao Basin as an example[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htm [25] 张春池, 彭文泉, 胡小辉, 等. 沾化凹陷沙河街组页岩气成藏条件研究[J]. 特种油气藏, 2019, 26(3): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903003.htmZHANG Chunchi, PENG Wenquan, HU Xiaohui, et al. Shale gas accumulation conditions of Shahejie Formation in Zhanhua Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903003.htm [26] 侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011.HOU Dujie, FENG Zihui. Oil and gas geochemistry[M]. Beijing: Petroleum Industry Press, 2011. [27] 林腊梅, 张金川, 刘锦霞, 等. 页岩气勘探目标层段优选[J]. 地学前缘, 2012, 19(3): 259-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203028.htmLIN Lamei, ZHANG Jinchuan, LIU Jinxia, et al. Favorable depth zone selection for shale gas prospecting[J]. Earth Science Frontiers, 2012, 19(3): 259-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203028.htm [28] 何庆, 何生, 董田, 等. 鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素[J]. 石油实验地质, 2019, 41(4): 530-539. doi: 10.11781/sysydz201904530HE Qing, HE Sheng, DONG Tian, et al. Pore structure characteristics and controls of Lower Cambrian Niutitang Formation, western Hubei Province[J]. Petroleum Geology & Experiment, 2019, 41(4): 530-539. doi: 10.11781/sysydz201904530 [29] 葛明娜, 庞飞, 包书景. 贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制: 以安页1井为例[J]. 石油实验地质, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023GE Mingna, PANG Fei, BAO Shujing. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology & Experiment, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023 [30] 惠威, 贾昱昕, 程凡, 等. 苏里格气田东部盒8储层微观孔隙结构及可动流体饱和度影响因素[J]. 油气地质与采收率, 2018, 25(5): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805002.htmHUI Wei, JIA Yuxin, CHENG Fan, et al. Impact of microscopic pore structure on moveable fluid saturation in He8 reservoir of eastern Sulige Gasfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805002.htm [31] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. [32] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. [33] 邓恩德, 金军, 王冉, 等. 黔北地区龙潭组海陆过渡相页岩微观孔隙特征及其储气性[J]. 科学技术与工程, 2017, 17(24): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201724032.htmDENG Ende, JIN Jun, WANG Ran, et al. Characteristics of microscopic pore and gas storage on shale in Permian Longtan Formation, northern Guizhou[J]. Science Technology and Engineering, 2017, 17(24): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201724032.htm [34] GREGG S J, SING K S W. Adsorption, surface area and porosity[M]. 2nd ed. London: Academic Press, 1982. [35] 杨峰, 宁正福, 王庆, 等. 页岩纳米孔隙分形特征[J]. 天然气地球科学, 2014, 25(4): 618-623. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404019.htmYANG Feng, NING Zhengfu, WANG Qing, et al. Fractal characteristics of nanopore in shales[J]. Natural Gas Geoscience, 2014, 25(4): 618-623. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404019.htm [36] 聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htmNIE Haikuan, ZHANG Jinchuan, LI Yuxi. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htm [37] 唐颖, 张金川, 刘珠江, 等. 解吸法测量页岩含气量及其方法的改进[J]. 天然气工业, 2011, 31(10): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201110032.htmTANG Ying, ZHANG Jinchuan, LIU Zhujiang, et al. Use and improvement of the desorption method in shale gas content tests[J]. Natural Gas Industry, 2011, 31(10): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201110032.htm