留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下扬子地区下寒武统荷塘组泥页岩地质特征与勘探前景——以浙西江山—桐庐地区为例

朱文博 张训华 王修齐 曲中党 黄正清 周道容

朱文博, 张训华, 王修齐, 曲中党, 黄正清, 周道容. 下扬子地区下寒武统荷塘组泥页岩地质特征与勘探前景——以浙西江山—桐庐地区为例[J]. 石油实验地质, 2020, 42(3): 477-488. doi: 10.11781/sysydz202003477
引用本文: 朱文博, 张训华, 王修齐, 曲中党, 黄正清, 周道容. 下扬子地区下寒武统荷塘组泥页岩地质特征与勘探前景——以浙西江山—桐庐地区为例[J]. 石油实验地质, 2020, 42(3): 477-488. doi: 10.11781/sysydz202003477
ZHU Wenbo, ZHANG Xunhua, WANG Xiuqi, QU Zhongdang, HUANG Zhengqing, ZHOU Daorong. Geological characteristics and shale gas potential of Lower Cambrian Hetang Formation in Lower Yangtze region: a case study of Jiangshan-Tonglu area, western Zhejiang province[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 477-488. doi: 10.11781/sysydz202003477
Citation: ZHU Wenbo, ZHANG Xunhua, WANG Xiuqi, QU Zhongdang, HUANG Zhengqing, ZHOU Daorong. Geological characteristics and shale gas potential of Lower Cambrian Hetang Formation in Lower Yangtze region: a case study of Jiangshan-Tonglu area, western Zhejiang province[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 477-488. doi: 10.11781/sysydz202003477

下扬子地区下寒武统荷塘组泥页岩地质特征与勘探前景——以浙西江山—桐庐地区为例

doi: 10.11781/sysydz202003477
基金项目: 

“十三五”国家科技重大专项 2016ZX05034-001-003

中央财政二级项目 DD20190083

详细信息
    作者简介:

    朱文博(1990-), 男, 博士研究生, 从事地球物理及页岩气成藏研究。E-mail: zhuwenbo_2012@163.com

    通讯作者:

    张训华(1961-), 男, 研究员, 博士生导师, 从事构造地质、综合地球物理研究。E-mail: xunhuazh611102@sina.com

  • 中图分类号: TE135

Geological characteristics and shale gas potential of Lower Cambrian Hetang Formation in Lower Yangtze region: a case study of Jiangshan-Tonglu area, western Zhejiang province

  • 摘要: 以往研究认为下扬子地区下寒武统暗色泥岩热演化程度普遍过高,制约了油气成藏,最新野外调查发现在浙西江山-桐庐地区存在热演化程度相对较低的区域。围绕该相对低值区域,以浙西区域地质调查资料、最新钻探的井下资料分析结果为基础,分析了江山-桐庐地区下寒武统荷塘组地质地化特征及页岩气勘探前景。该区荷塘组处于有利沉积相带内(深水盆地-陆棚相),具有沉积厚度大、有机质丰度高、热演化程度相对较低、脆性矿物含量高、黏土矿物含量适中、微孔隙微裂缝较发育等特点,认为该区具有较好的成藏物质基础。并以"高中找厚"(寻找高有机质丰度泥页岩沉积较厚区域)、"高中找低"(在普遍高热演化程度环境中寻找较低值区域)、"强中找稳"(在强构造背景中寻找地层稳定、埋藏较深区域)为原则,同时避开岩体以及岩浆活动较强烈的区域,优选出常山-开化地区为页岩气有利勘探区。

     

  • 图  1  下扬子浙西地区构造单元划分及地层柱状图

    Figure  1.  Tectonic units and lithological column of western Zhejiang province, Lower Yangtze region

    图  2  浙西江山—桐庐地区荷塘组沉积时期岩相古地理

    Figure  2.  Sedimentary facies distribution of Hetang Formation in Jiangshan-Tonglu area, western Zhejiang province

    图  3  浙西江山—桐庐地区地层柱状剖面

    图中纵坐标未按比例尺绘制,荷塘组地层厚度以图上标注数据为准。

    Figure  3.  Stratigraphic columns of Jiangshan-Tonglu area, western Zhejiang province

    图  4  浙西江山—开化地区荷塘组样品稀土元素配分模式

    Figure  4.  REE distribution of Hetang Formation in Jiangshan-Kaihua area, western Zhejiang province

    图  5  浙西江山—桐庐地区早寒武世荷塘期TOC和Ro展布

    Figure  5.  w(TOC) and Ro distribution of Lower Cambrian Hetang Formation in Jiangshan-Tonglu area, western Zhejiang province

    图  6  浙西江山地区荷塘组泥页岩孔隙结构特征

    a.野外天然张裂缝发育;b.普遍见张裂缝,被方解石半或全填充,ZJD-1井岩心;c.裂缝发育(背散射电子图像),ZJD-1井,620.3 m;d.成岩收缩缝及微裂缝,ZJD-1井,620.3 m;e.裂缝和孔隙中充填黄铁矿,发育少量微米级粒内孔,ZJD-1井,620.3 m;f.孔隙中充填石英晶粒、有机质、片状伊利石,晶间孔、粒间孔较发育,ZJD-1井,639.2 m;g.溶蚀微孔较发育,ZJD-1井,620.3 m;h.微缝隙分布,局部发育粒间孔,ZJD-1井,620.3 m;i.有机质包裹黏土矿物,有机质孔发育较少,后岭坞露头样品

    Figure  6.  Pore structure in shale from Hetang Formation in Jiangshan area, western Zhejiang province

    图  7  浙西江山—桐庐地区页岩气有利区优选

    Figure  7.  Potential district for shale gas exploration in Jiangshan-Tonglu area, western Zhejiang province

    图  8  浙西常山—开化地区地质剖面及野外地层出露

    a.常山—开化地区构造剖面;b-c.开化地区寒武系地层出露;d.常山地区寒武系地层出露;e.江山地区寒武系地层出露

    Figure  8.  Geological profile and outcrops in Changshan-Kaihua area, western Zhejiang province

    表  1  浙西江山—开化地区荷塘组稀土元素分析结果

    Table  1.   REE analyses of Hetang Formation in Jiangshan-Kaihua area, western Zhejiang province

    采样地区 样品 ΣREE/10-6 ΣLREE/10-6 ΣHREE/10-6 ΣLREEHREE (La/Sm)S (La/Yb)S (La/Sm)N (La/Yb)N δCe δEu
    开化十里浦 L2D002-2 105.52 99.72 5.79 17.21 5.43 20.15 1.62 2.74 0.92 3.78
    开化大山坞 L3D001-1 106.55 99.84 6.72 14.87 5.28 13.23 1.58 1.80 0.71 1.30
    L3D001-2 102.07 95.28 6.79 14.03 5.41 14.85 1.62 2.02 0.85 2.44
    常山白石镇 L4D009 122.89 111.04 11.85 9.37 3.66 9.30 1.09 1.27 0.92 1.12
    L4D010 39.64 34.26 5.38 6.37 5.20 7.54 1.55 1.03 0.84 1.27
    ZJD1井 ZJD-1 107.22 94.88 12.34 7.69 3.58 7.78 1.07 1.06 0.91 0.72
    ZJD-2 61.39 54.21 7.18 7.55 3.11 7.84 0.93 1.07 0.93 1.30
    ZJD-3 67.81 60.25 7.56 7.97 3.00 8.31 0.90 1.13 0.93 1.16
    ZJD-4 74.54 65.85 8.69 7.58 3.31 8.03 0.99 1.09 0.92 1.07
    ZJD-5 103.46 92.01 11.45 8.04 3.48 8.60 1.04 1.17 0.92 0.80
    ZJD-6 128.74 114.54 14.20 8.07 3.95 9.01 1.18 1.23 0.88 0.70
    ZJD-7 140.30 125.23 15.07 8.31 3.33 9.52 1.00 1.30 0.92 0.57
    ZJD-8 91.04 80.87 10.17 7.95 3.58 8.68 1.07 1.18 0.93 0.93
    ZJD-9 76.97 68.22 8.75 7.80 3.89 7.90 1.16 1.08 0.91 1.18
    ZJD-10 65.76 58.02 7.74 7.50 3.38 7.54 1.01 1.03 0.93 1.36
    ZJD-11 60.83 53.93 6.90 7.82 3.35 7.96 1.00 1.08 0.92 1.39
    ZJD-12 49.99 43.61 6.38 6.84 3.54 7.52 1.06 1.02 1.01 1.70
    ZJD-13 179.24 156.36 22.88 6.83 4.45 8.94 1.33 1.22 0.85 0.50
    ZJD-14 321.22 258.58 62.64 4.13 3.24 5.80 0.97 0.79 0.49 0.19
    ZJD-15 109.41 90.52 18.89 4.79 3.05 4.56 0.91 0.62 0.72 0.69
    注:下标S表示球粒陨石标准化, 下标N表示北美页岩标准化[13]δCe=2CeS/(LaS+PrS),δEu=EuS/(SmS+GdS)0.5
    下载: 导出CSV

    表  2  浙西江山—桐庐地区荷塘组泥页岩有机碳含量和成熟度数据

    Table  2.   w(TOC) and Ro data of shale from Hetang Formation in Jiangshan-Tonglu area, western Zhejiang province

    序号 样品编号 岩性 w(TOC)/% Rb/% EqVRo[20]/% 序号 样品编号 岩性 w(TOC)/% Rb/% EqVRo/%
    1 JH02 硅质碳质页岩 9.75 4.52 3.39 25 L4D009 碳质页岩 1.48 2.87 2.27
    2 JH10 硅质碳质页岩 2.83 4.29 3.23 26 L4D010 硅质泥岩 3.76 3.12 2.44
    3 JH13 硅质碳质页岩 15.30 4.37 3.29 27 Khmk-01 碳质页岩 3.99 3.03
    4 JH14 硅质碳质页岩 13.23 3.74 2.86 28 Khmk-02 碳质页岩 4.68 3.50
    5 JH16 钙质泥岩 0.64 4.61 3.45 29 Khmk-03 碳质页岩 3.15 2.46
    6 JH17 硅质碳质页岩 2.86 4.53 3.40 30 Khmk-04 碳质页岩 4.70 3.51
    7 JH18 碳质页岩 2.37 3.71 2.84 31 Khmk-05 碳质页岩 3.90 2.97
    8 JH20 碳质页岩 4.09 2.85 2.25 32 Khmk-06 碳质页岩 4.93 3.67
    9 JH30 碳质页岩 4.87 4.35 3.27 33 ZJD-1 硅质泥岩 3.13 4.27 3.22
    10 JH32 碳质页岩 4.55 4.13 3.12 34 ZJD-2 硅质泥岩 3.52 3.56 2.74
    11 JH37 碳质页岩 2.82 4.19 3.16 35 ZJD-3 硅质泥岩 3.51 3.48 2.68
    12 JH41 钙质泥岩 0.79 4.66 3.48 36 ZJD-4 硅质泥岩 3.57 3.76 2.87
    13 JH42 碳质页岩 6.00 4.32 3.25 37 ZJD-5 硅质灰岩 1.93 4.12 3.12
    14 JH43 碳质页岩 18.60 4.74 3.54 38 ZJD-6 硅质灰岩
    15 JH45 钙质泥岩 8.94 4.11 3.11 39 ZJD-7 硅质灰岩 2.76 9.71 2.84
    16 JH46 硅质碳质页岩 5.18 4.31 3.25 40 ZJD-8 硅质灰岩
    17 JH48 钙质泥岩 0.36 3.79 2.89 41 ZJD-9 黑色硅质泥岩 2.97
    18 JH49 硅质岩 3.78 4.43 3.33 42 ZJD-10 黑色硅质泥岩 3.33 4.07 3.08
    19 JH50 碳质页岩 4.61 4.32 3.25 43 ZJD-11 黑色硅质泥岩 3.57
    20 JH52 碳质页岩 3.34 3.82 2.91 44 ZJD-12 黑色硅质泥岩 5.22 3.80 2.90
    21 JH53 碳质页岩 23.52 4.65 3.48 45 ZJD-13 黑色硅质泥岩 16.93 3.76 2.87
    22 JH58 碳质页岩 3.83 4.69 3.50 46 ZJD-14 黑色硅质泥岩 9.56 3.73 2.85
    23 L2D002 硅质页岩 2.99 3.28 2.55 47 ZJD-15 黑色硅质泥岩 13.67 3.71 2.84
    24 L3D001 硅质页岩 3.43 4.44 3.33
    注:Rb为沥青随机反射率,EqVRo为等效镜质体反射率,EqVRo=0.679Rb+0.319 5[20]
    下载: 导出CSV

    表  3  浙西江山—开化地区荷塘组泥页岩主要矿物及黏土矿物组分

    Table  3.   Mineral and clay components of Hetang Formation in Jiangshan-Kaihua area, western Zhejiang province

    样品 矿物组分/% 黏土组分/%
    石英 PF PL Cal Dol Py Sid 黏土 I K C I/S C/S IS CS
    L2D002-2 46 22 0 0 2 2 28 71 23 0 6 0 5 0
    L3D001-1 56 3 4 2 0 0 35 87 0 0 13 0 40 0
    L3D001-2 7 21 7 7 0 0 15 0 0 2 98 0 5 0
    L4D009 49 2 0 2 0 0 22 24 8 1 67 0 5 0
    L4D010 67 3 0 17 3 2 8 12 5 7 76 0 5 0
    ZJD-1 35.6 5.2 0.7 0.6 8.7 10 0 20 48 0 0 52 0 5 0
    ZJD-2 68.4 1.4 0 3.4 4.5 2.2 0 11.6 43 0 0 57 0 5 0
    ZJD-3 72.5 2.6 0 3.1 3.2 6.5 0 6.9 41 0 0 59 0 5 0
    ZJD-4 64.3 2.4 0 3.7 5.7 5 0 18.9 36 0 0 64 0 5 0
    ZJD-5 58.3 1.7 0 12.9 8.1 4.1 0 14.9 37 0 0 63 0 5 0
    ZJD-6 56.6 2.2 0 14.5 3.9 6.4 0 14.5
    ZJD-8 54.2 0 0 6.7 13.1 5.4 0 20.6 40 0 0 60 0 5 0
    ZJD-9 68.1 2.7 0 3.2 6 5.9 0 14.1 41 0 0 59 0 5 0
    ZJD-10 69.7 1.5 0 5.8 7.1 3.3 0 12.6 45 0 0 55 0 5 0
    ZJD-11 66.1 1.4 0 7.6 6.9 5.9 0 12.1 42 0 0 58 0 5 0
    ZJD-12 71.5 0 0 6.3 5.2 2.8 0 12.1 59 0 0 41 0 5 0
    ZJD-14 61.6 4.7 0 0.5 1.9 7.4 4.3 15.2 47 0 0 53 0 5 0
    ZJD-15 61.9 2.5 0 0.5 6.4 8.2 0 16.5 35 0 0 65 0 5 0
    注:PF.钾长石,PL.斜长石,Cal.方解石,Dol.白云石,Py.黄铁矿,Sid.菱铁矿,I.伊利石,K.高岭土,C.绿泥石,S.蒙脱石,I/S.伊/蒙混层,C/S.绿/蒙混层,IS.伊蒙混层比,CS.绿蒙混层比。
    下载: 导出CSV

    表  4  研究区荷塘组与中美典型含油气页岩地质参数对比[5, 8, 10, 25, 28-29]

    Table  4.   Comparison of geological parameters between Hetang Formation and typical oil/gas-bearing shale of China and America

    页岩层系 美国页岩气层 中国页岩气层
    Barnett Haynesville Utica Marcellus 五峰组—龙马溪组 筇竹寺组 荷塘组
    地区 Fort Worth Sabine隆起 Appalachian Appalachian 涪陵地区 威远地区 江山—桐庐地区
    地层时代 石炭纪 侏罗纪 奥陶纪 泥盆纪 奥陶纪—志留纪 寒武纪 寒武纪
    埋深/m 1 981~2 591 3 048~4 115 2 100~4 300 1 006~2 682 2 000~4 000 2 600~4 600 500~4 500
    有效厚度/m 15~61 61~91.44 20~300 14~117 40~80 20~80 20~440
    w(TOC)/% 2.4~7.0/4.5 0.5~4 3.0~8.0 2.0~8.0 2.0~8.0 2.3~4.2 0.36~23.52/5.84
    EqVRo/% 1.1~2.2 2.2~3.2 0.6~3.2 1.23~2.56 2.65 1.5~5.7 2.25~3.67/3.07
    有机质类型 Ⅰ、Ⅱ Ⅰ、Ⅱ Ⅰ、Ⅱ Ⅱ、混Ⅲ Ⅰ、Ⅱ Ⅰ、混Ⅱ1 Ⅰ、混Ⅱ1
    总孔隙度/% 4.0~5.0 8.0~9.0 3.0~6.0 3.0~13.0 1.2~8.1 0.82~4.86/2.44 0.13~9.98/1.69
    基质渗透率/10-6μm2 0.073~0.5 0.05~0.8 0.8~3.5 0.1~0.7 0.001~5.7 0.006~0.158/0.046
    脆性矿物含量/% 30~60 50~70 70~80 40~70 50~80 69~77/73 41.5~75.1/64.7
    注:“/”后为平均值。
    下载: 导出CSV

    表  5  浙西常山—开化有利区优选主要参数[8, 10, 30]

    Table  5.   Main parameters for favorable area optimization in Changshan-Kaihua area, western Zhejiang province

    主要参数 变化范围 常山—开化地区
    页岩面积/km2 200~500 1 900
    泥页岩厚度/m 厚度稳定,大于10 50~300
    w(TOC)/% 平均大于2.00 2.86~13.23
    Ro/% I型大于1.20,Ⅱ型大于0.70 2.25~3.12
    埋深/m 300~4 500 500~3 300
    地表条件 地形高差较小,平原、丘陵、低山、中山、沙漠等 丘陵
    总含气量/(m3•t-1) ≥0.50 吸附气0.5~8.6/3.26
    保存条件 中等—好 中等
    下载: 导出CSV
  • [1] U.S. Energy Information Administration. Natural gas gross withdrawals and production[Z/OL]. 2020-03-31[2020-04-15]. https://www.eia.gov/dnav/ng/NG_PROD_SUM_DC_NUS_MMCF_M.htm.
    [2] SOEDER D J. The successful development of gas and oil resources from shales in North America[J]. Journal of Petroleum Science and Engineering, 2018, 163: 399-420. doi: 10.1016/j.petrol.2017.12.084
    [3] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [4] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm

    ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    [5] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm

    ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
    [6] 蔡周荣, 夏斌, 黄强太, 等. 上、下扬子区古生界页岩气形成和保存的构造背景对比分析[J]. 天然气地球科学, 2015, 26(8): 1446-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508003.htm

    CAI Zhourong, XIA Bin, HUANG Qiangtai, et al. Comparative study of the tectonic setting on the formation and preservation of Paleozoic shale gas between the Upper Yangtze and the Lower Yangtze platforms[J]. Natural Gas Geoscience, 2015, 26(8): 1446-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508003.htm
    [7] 刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201803008.htm

    LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201803008.htm
    [8] 章伟. 浙西地区下寒武统荷塘组页岩气地质条件及含气性研究[D]. 北京: 中国地质大学(北京), 2014: 25-45.

    ZHANG Wei. Research on geological condition and gas-bearing of shale gas in Hetang Formation, Lower Cambrian in the west region of Zhejiang Province[D]. Beijing: China University of Geosciences (Beijing), 2014: 25-45.
    [9] 黄正清, 周道容, 李建青, 等. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价[J]. 石油实验地质, 2019, 41(1): 94-98. doi: 10.11781/sysydz201901094

    HUANG Zhengqing, ZHOU Daorong, LI Jianqing, et al. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area[J]. Petroleum Geology & Experiment, 2019, 41(1): 94-98. doi: 10.11781/sysydz201901094
    [10] 何钰. 浙江地区下寒武统荷塘组页岩气资源前景初探[D]. 杭州: 浙江大学, 2015: 23-40.

    HE Yu. Preliminary study on shale gas resource potential of the Lower Cambrian Hetang Formation in Zhejiang region[D]. Hangzhou: Zhejiang University, 2015: 23-40.
    [11] 浙江省地质矿产局. 浙江省区域地质志[M]. 北京: 地质出版社, 1989.

    Bureau of Geoogy and Mineral Resources of Zhejiang Province. Regional Geology of Zhejiang Province[M]. Beijing: Geological Publishing House, 1989.
    [12] 薛耀松, 俞从流. 浙西、赣东北寒武系下统荷塘组岩石特征及沉积环境分析[J]. 地层学杂志, 1979, 3(4): 283-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ197904005.htm

    XUE Yaosong, YU Congliu. The analysis of rocks features and sedimentary of Lower Cambrian Hetang Formation in west Zhejiang-northeast of Jiangxi[J]. Journal of Stratigraphy, 1979, 3(4): 283-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ197904005.htm
    [13] HENDERSON P. Rare earth element geochemistry[M]. Amsterdam, Netherlands: Elsevier, 2013.
    [14] 曹婷婷, 徐思煌, 王约. 川东北下寒武统筇竹寺组稀土元素特征及其地质意义: 以南江杨坝剖面为例[J]. 石油实验地质, 2018, 40(5): 716-723. doi: 10.11781/sysydz201805716

    CAO Tingting, XU Sihuang, WANG Yue. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: a case study of Yangba section, Nanjiang[J]. Petroleum Geology & Experiment, 2018, 40(5): 716-723. doi: 10.11781/sysydz201805716
    [15] 王立社, 侯俊富, 张复新, 等. 北秦岭庙湾组黑色岩系稀土元素地球化学特征及成因意义[J]. 地球学报, 2010, 31(1): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201001011.htm

    WANG Lishe, HOU Junfu, ZHANG Fuxin, et al. REE geochemical characteristics of the Miaowan Formation black rock series in North Qinling mountain and their genetic significance[J]. Acta Geoscientia Sinica, 2010, 31(1): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201001011.htm
    [16] 张玉松, 张杰, 毛瑞勇. 贵州下寒武统黑色页岩稀土元素组成及示踪特征研究[J]. 稀土, 2019, 40(3): 7-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201903002.htm

    ZHANG Yusong, ZHANG Jie, MAO Ruiyong. REE composition and tracing characteristics of Lower Cambrian black shale in Guizhou[J]. Chinese Rare Earths, 2019, 40(3): 7-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201903002.htm
    [17] SVERJENSKY D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78.
    [18] 王祥, 刘玉华, 张敏, 等. 页岩气形成条件及成藏影响因素研究[J]. 天然气地球科学, 2010, 21(2): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201002028.htm

    WANG Xiang, LIU Yuhua, ZHANG Min, et al. Conditions of formation and accumulation for shale gas[J]. Natural Gas Geo-science, 2010, 21(2): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201002028.htm
    [19] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    [20] 王晔, 邱楠生, 仰云峰, 等. 四川盆地五峰-龙马溪组页岩成熟度研究[J]. 地球科学, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm

    WANG Ye, QIU Nansheng, YANG Yunfeng, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm
    [21] 丰国秀, 陈盛吉. 岩石中沥青反射率与镜质体反射率之间的关系[J]. 天然气工业, 1988, 8(3): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198803006.htm

    FENG Guoxiu, CHEN Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Atural Gas Industry, 1988, 8(3): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198803006.htm
    [22] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
    [23] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm

    ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
    [24] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4): 392-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704003.htm

    LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4): 392-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704003.htm
    [25] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [26] 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2016, 45(1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601012.htm

    FU Changqing, ZHU Yanming, CHEN Shangbin. Pore structure and fractal features of Hetang formation shale in western Zhejiang[J]. Journal of China University of Mining & Technology, 2016, 45(1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601012.htm
    [27] 丁江辉, 张金川, 杨超, 等. 页岩有机孔成因演化及影响因素探讨[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201902004.htm

    DING Jianghui, ZHANG Jinchuan, YANG Chao, et al. Formation evolution and influencing factors of organic pores in shale[J]. Journal of Southwest Petroleum University (Science & Techno-logy Edition), 2019, 41(2): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201902004.htm
    [28] REZAEE R. Fundamentals of gas shale reservoirs[M]. Hoboken: John Wiley & Sons, 2015.
    [29] 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm

    WANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
    [30] 张奥博, 汤达祯, 陶树, 等. 中美典型含油气页岩地质特征及开发现状[J]. 油气地质与采收率, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm

    ZHANG Aobo, TANG Dazhen, TAO Shu, et al. Analysis of geolo-gical background and development situation of typical oil/gas-bearing shales in China and America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm
    [31] 谢国梁, 刘水根, 沈玉林, 等. 赣东北荷塘组页岩气成藏条件及有利区评价[J]. 中国矿业大学学报, 2015, 44(4): 704-713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201504016.htm

    XIE Guoliang, LIU Shuigen, SHEN Yulin, et al. Reservoir-forming conditions and favorable areas evaluation of shale gas reservoir in Hetang formation, northeastern Jiangxi area[J]. Journal of China University of Mining & Technology, 2015, 44(4): 704-713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201504016.htm
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1050
  • HTML全文浏览量:  341
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-24
  • 修回日期:  2020-04-17
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回