Micro-pore structure in an inter-salt shale oil reservoir and the relationship with physical properties in the fourth section of the third member of Qianjiang Formation, Qianjiang Sag, Jianghan Basin
-
摘要: 以X衍射、薄片、常规扫描电镜及氩离子抛光扫描电镜、FIB三维孔隙重构等手段,结合压汞及氮气吸附孔体积定量分析,研究了江汉盆地潜江凹陷盐间潜34油组页岩油储层微观结构及与物性的关系。按矿物含量的高低,把储层划分为云质泥岩、泥质云岩及含泥云岩三大类。该储层矿物组成、结构非均质性强,常规柱孔隙度变化大,在1%~13%之间。其中云质泥岩孔隙度低,泥质云岩、含泥云岩孔隙度高,钙芒硝含量高的泥岩孔隙度较低。储层微观结构变化大,云质泥岩具定向排列结构,以狭长状或扁平状微孔隙为主;孔径小,以直径20~50 nm的孔隙体积为主,最大连通喉道小,在22~42 nm之间。泥质云岩以残余粒间孔及粒间充填的黏土片间孔为主,孔径变大,以直径20~80 nm的孔隙体积为主,最大连通喉道变化大,在16~158 nm之间。含泥云岩以均匀晶粒结构、多边形等轴状晶间微孔为主;孔径大,以直径80~180 nm的孔隙体积为主,最大连通喉道大,在158~196 nm。云质泥岩、泥质云岩、含泥云岩的孔隙连通分别具有“缝—缝、孔—缝、孔—孔相连”的特征,含泥云岩孔隙度大、连通喉道宽、孔隙结构优,具最好的页岩油储集空间。Abstract: The micro-pore structure of an inter-salt shale oil reservoir and its relationship with physical properties in the fourth section of the third member of Qianjiang Formation (Eq34) in the Qianjiang Sag of Jianghan Basin were studied using X-ray diffraction, thin section observation, conventional scanning electron microscopy (SEM), argon ion polishing SEM and three-dimensional pore reconstruction of focused ion beam, microscopy combined with quantitative analysis of mercury intrusion and nitrogen adsorption pore volume. According to the level of mineral content, the reservoir is divided into three categories: dolomitic mudstone, argillaceous dolomite and muddy dolomite. The mineral composition and structure of the reservoir are highly heterogeneous, and the conventional core-plug porosity varies greatly, ranging from 1% to 13%. The porosity of dolomitic mudstone is low, the porosity of argillaceous dolomite and muddy dolomite is high, and the porosity of mudstone with high content of glauberite is low. The reservoir microstructure changes greatly, and the dolomitic mudstone has a directional arrangement structure, mainly with elongated or flat micropores. The pore size is small, with a pore diameter of 20-50 nm, and the largest connecting throat is small, ranging from 22 to 42 nm. The argillaceous dolomite mainly contains residual intergranular pores and pores between clay layers. The pore diameter becomes larger, mainly 20 to 80 nm. The maximum connecting throat varies greatly, between 16 and 158 nm. The muddy dolomite is mainly composed of uniform grain structure, polygonal equidimensional intergranular micropores. The pore size is large, 80-180 nm. The largest connecting throat is large, at 158-196 nm. The pore connection of dolomitic mudstone, argillaceous dolomite and muddy dolomite has the characteristics of "fracture-fracture, pore-fracture, pore-pore connection", respectively. The muddy dolomite has high porosity, wide connecting throats, and favorable pore structure, indicating the best shale oil storage space.
-
Key words:
- mineral composition /
- porosity /
- micro structure /
- shale oil reservoir /
- Qianjiang Formation /
- Qianjiang Sag /
- Jianghan Basin
-
图 1 江汉盆地潜江凹陷潜34油组有利区分布和蚌页油1、2井位置
据参考文献[4]修改。
Figure 1. Favorable targets for Eq34 oil group and location of shale oil wells BYY1 and BYY2, Qianjiang Sag, Jianghan Basin
图 3 江汉盆地潜江凹陷盐间潜34油组页岩油储层微观结构
a.云质泥岩,BYY1-45,纹层结构;b.云质泥岩,BYY1-45,黏土与有机质粘合纹层,见油浸;c.云质泥岩,BYY1-45,黏土定向排列与层理缝;d.云质泥岩,BYY1-45,纹层及层理缝;e.泥质云岩,BYY1-61;黏土充填白云石粒间;f.泥质云岩,BYY1-61,白云石微晶放大;g.泥质云岩,BYY1-61,致密块状见黄铁矿斑块;h.泥质云岩,BYY1-61,黏土略减少,粒间充填,略定向;i.含泥云岩,BYY1-220,均匀致密块状结构,10×2.5;j.含泥云岩,BYY1-220,以白云石微晶为主,见油浸;k.含泥云岩,BYY1-220,均匀致密块状结构;l.含泥云岩,BYY1-220,放大,白云石微晶结构,晶间少量黏土,晶间微孔为主;m.钙芒硝云质泥岩,BYY1-224,钙芒硝与云质泥岩微细互层;n.钙芒硝云质泥岩,BYY1-253,钙芒硝晶体分散状;o.钙芒硝云质泥岩,BYY1-253,钙芒硝包裹的微晶石英及溶蚀孔
Figure 3. Micro structure of shale oil reservoir, Eq34 oil group, Qianjiang Sag, Jianghan Basin
表 1 江汉盆地潜江凹陷蚌页油1、2井页岩油储层全岩X衍射及物性分析
Table 1. Whole rock X-ray diffraction and physical property analyses of shale oil reservoir in wells BYY1 and BYY2, Qianjiang Sag, Jianghan Basin
% 井号 样号 岩性 井深/m 地层 黏土 石英 钾长石 斜长石 方解石 白云石 菱铁矿 石盐 黄铁矿 硬石膏 钙芒硝 孔隙度(柱) 压汞孔隙度 最大连通半径/nm 中值半径/nm 蚌页油1井 45 云质泥岩 3 124.1 Eq3 29.6 14.5 1.0 6.4 5.8 28.8 0.3 4.5 1.1 8.0 1.1 4.5 11 4 55 泥质云岩 3 124.4 Eq3 19.2 9.2 0.9 7.2 16.5 40.2 0.4 0.7 2.0 1.3 2.3 8.4 5.1 8 4 61 泥质云岩 3 124.7 Eq3 18.7 9.2 0.8 7.5 19.6 34.9 0.2 0.5 5.3 2.1 1.2 1.0 3.8 11 4 67 云质泥岩 3 124.9 Eq3 38.6 17.8 1.2 6.7 18.6 5.0 0.5 0.1 8.0 1.2 2.4 3.1 7.1 11 4 143 泥质云岩 3 127.3 Eq3 18.5 10.2 0.2 6.3 12.1 47.6 0.3 1.7 1.6 0.8 0.6 7.5 10.8 33 16 161 泥质云岩 3 127.8 Eq3 13.9 9.4 0.5 7.3 16.9 43.1 0.1 1.0 2.7 0.7 4.3 2.5 11.5 41 19 192 钙芒硝泥质云岩 3 129.1 Eq3 17.1 9.0 1.0 5.5 6.7 25.4 3.5 0.1 2.1 1.6 27.9 2.8 10.5 79 28 205 钙芒硝含泥云岩 3 129.6 Eq3 8.0 7.5 0.4 7.7 4.0 54.1 0.9 1.1 2.0 0.8 13.3 13.4 16.1 79 52 220 含泥云岩 3 130.1 Eq3 7.6 12.6 0.9 10.5 3.6 56.7 0.1 3.6 2.0 1.1 1.2 3.8 12.7 98 60 224 钙芒硝云质泥岩 3 130.3 Eq3 34.1 20.3 0.9 4.1 5.3 3.7 0.8 1.5 3.7 1.5 24.1 3.8 9.8 14 5 197 云质泥岩 3 129.3 Eq3 31.3 22.2 2.8 7.5 11.3 7.0 0.8 0.9 9.5 1.5 5.1 1.6 6.3 14 6 253 钙芒硝云质泥岩 3 131.4 Eq3 27.6 15.3 0.3 3.7 3.6 1.9 5.6 0.1 2.8 1.7 37.4 0.7 4.1 21 9 264 云质泥岩 3 131.7 Eq3 13.3 8.7 0.9 3.5 2.7 58.1 0.1 8.6 2.3 0.6 1.2 8.2 3.6 21 9 蚌页油2井 39 泥质云岩 2 814.9 Eq3 21.7 7.8 0.3 7.5 13.2 41.6 0.6 0.7 3.2 0.9 1.5 9.0 9.6 21 9 109 含泥云岩 2 817.8 Eq3 28.2 15.1 1.1 7.1 13.1 20.2 0.5 1.4 6.5 1.3 5.5 10.5 11.2 97 27 1209 钙芒硝泥质云岩 3 572.3 Eq4 10.7 4.3 0.5 5.4 0.4 13.1 0.5 4.7 0.4 6.1 53.9 1.9 6.4 14 7 1303 泥质云岩 3 577.6 Eq4 23.7 11.4 1.1 12.2 17.8 21.2 1.0 5.3 3.1 1.3 1.9 9.4 6.5 17 5 1359 硬石膏泥质云岩 3 580.1 Eq4 10.6 5.6 0.7 5.5 2.7 8.9 0.2 2.4 1.3 60.0 0.7 2.5 6.6 17 8 1389 钙芒硝硬石膏泥质云岩 3 581.2 Eq4 4.9 3.3 0.9 4.1 3.5 3.3 0.4 5.8 2.0 54.3 17.4 5.2 9.8 17 8 -
[1] 郑有恒, 吴世强, 何又雄, 等. 潜江凹陷盐间泥质白云岩油藏勘探技术研究[R]. 武汉: 中国石化江汉油田分公司, 2013.ZHENG Youheng, WU Shiqiang, HE Youxiong, et al. Exploration technology research on inter salt argillaceous dolomites reservoir in the Qianjiang Depression of Jianghan Salt Lake Basin[R]. Wuhan: SINOPEC Jianghan Oilfield Company, 2013. [2] 方志雄. 潜江盐湖盆地盐间沉积的石油地质特征[J]. 沉积学报, 2002, 20(4): 608-613. doi: 10.3969/j.issn.1000-0550.2002.04.012FANG Zhixiong. Hydrocarbon exploration signification of intersalt sediments in Qianjiang Saline Lake Basin[J]. Acta Sedi-mentologica Sinica, 2002, 20(4): 608-613. doi: 10.3969/j.issn.1000-0550.2002.04.012 [3] 张永生, 杨玉卿, 漆智先, 等. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境[J]. 古地理学报, 2003, 5(1): 29-35. doi: 10.3969/j.issn.1671-1505.2003.01.003ZHANG Yongsheng, YANG Yuqing, QI Zhixian, et al. Sedimentary characteristics and environments of the salt-bearing series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin[J]. Journal of Palaeogeography, 2003, 5(1): 29-35. doi: 10.3969/j.issn.1671-1505.2003.01.003 [4] 吴严冬. 潜江凹陷潜34-10韵律页岩油储层录井评价[J]. 江汉石油职工大学学报, 2019, 32(5): 1-3. doi: 10.3969/j.issn.1009-301X.2019.05.001WU Yandong. Logging evaluation on Qian 34-10 rhythm shale oil reservoir in Qianjiang Sag[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(5): 1-3. doi: 10.3969/j.issn.1009-301X.2019.05.001 [5] 陈树杰, 赵薇. 江汉盆地潜江凹陷盐间泥质白云岩油藏储层物性特征探讨[J]. 长江大学学报(自然科学版), 2010, 7(1): 168-170. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201001053.htmCHEN Shujie, ZHAO Wei. Characterization of inter-salt argillaceous dolomite reservoirs in Qianjiang Depression, Jianghan Basin[J]. Journal of Yangtze University (Natural Science Edition), 2010, 7(1): 168-170. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201001053.htm [6] 熊智勇, 吴世强, 王洋, 等. 江汉盐湖盆地盐间泥质白云岩油藏地质特征与实践[J]. 地质科技情报, 2015, 34(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htmXIONG Zhiyong, WU Shiqiang, WANG Yang, et al. Geological characteristics and practice for intersalt argillaceous dolomites reservoir in the Qianjiang Depression of Jianghan Salt Lake Basin[J]. Geological Science and Technology Information, 2015, 34(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htm [7] 王芙蓉, 何生, 郑有恒, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J]. 石油实验地质, 2016, 38(22): 211-218. doi: 10.11781/sysydz201602211WANG Furong, HE Sheng, ZHENG Youheng, et al. Mineral composition and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology & Experiment, 2016, 38(22): 211-218. doi: 10.11781/sysydz201602211 [8] 唐文明, 何平, 王建军. 蚌页油2井盐下页岩油钻井液技术[J]. 江汉石油科技, 2019, 29(4): 35-41.TANG Wenming, HE Ping, WANG Jianjun. Drilling fluid technique of Bengyeyou-2 well for exploring pre-salt shale oil[J]. Jianghan Petroleum Science and Technology, 2019, 29(4): 35-41. [9] 周小波. 蚌页油2井韵律型盐层下安全钻井技术实践[J]. 化工设计通讯, 2018, 44(11): 247-248. https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX201811219.htmZHOU Xiaobo. Practice of safe drilling technology under the rhythmic salt layer of the Sai Page Oil 2 well[J]. Chemical Engineering Design Communications, 2018, 44(11): 247-248. https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX201811219.htm [10] 童孝木. 潜江凹陷页岩油蚌页油1HF井钻完井技术[J]. 石化技术, 2019, 26(2): 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201902060.htmTONG Xiaomu. Drilling and completion technology of shale oil Beng Shale 1HF well in Qianjiang Depression[J]. Petrochemical Industry Technology, 2019, 26(2): 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201902060.htm [11] 殷文洁. 水平井地质导向技术在盐间页岩油勘探中的应用[J]. 江汉石油职工大学学报, 2019, 32(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD201902003.htmYIN Wenjie. Application of horizontal well geological steering technology in inter-salt shale oil exploration[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD201902003.htm [12] 孙中良, 王芙蓉, 何生, 等. 潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J]. 深圳大学学报(理工版), 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htmSUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang Depression[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htm [13] 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htmLONG Yumei, CHEN Manfei, CHEN Fengling, et al. Characte-ristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htm [14] 孙中良, 王芙蓉, 侯宇光, 等. 潜江凹陷潜江组页岩中可溶有机质赋存空间表征及影响因素分析[J]. 地质科技情报, 2019, 38(6): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906011.htmSUN Zhongliang, WANG Furong, HOU Yuguang, et al. Spatial characterization and influencing factors of soluble organic matter in shale of Qianjiang Formation in Qianjiang Depression[J]. Geological Science and Technology Information, 2019, 38(6): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906011.htm [15] 李乐, 刘爱武, 漆智先, 等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学(中国地质大学学报), 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htmLI Le, LIU Aiwu, QI Zhixian, et al. Pore structure characteristics of shale reservoir of the lower Qian 4 member in the Wangchang anticline of the Qianjiang Sag[J]. Earth Science(Journal of China University of Geosciences), 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htm [16] 徐二社, 陶国亮, 李志明, 等. 江汉盆地潜江凹陷盐间页岩油储层不同岩相微观储集特征: 以古近系潜江组三段4亚段10韵律为例[J]. 石油实验地质, 2020, 42(2): 193-201. doi: 10.11781/sysydz202002193XU Ershe, TAO Guoliang, LI Zhiming, et al. Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang Sag, Jianghan Basin: a case study of Paleogene Eq34-10 rhythm[J]. Petroleum Geology & Experiment, 2020, 42(2): 193-201. doi: 10.11781/sysydz202002193 [17] 黄成刚, 李智勇, 倪祥龙, 等. 柴达木盆地英西地区E32盐类矿物成因及油气地质意义[J]. 现代地质, 2017, 31(4): 779-790. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704012.htmHUANG Chenggang, LI Zhiyong, NI Xianglong, et al. Origin of salt minerals and oil-gas geological significance of E32 reservoirs in saline lacustrine basin of the Yingxi area, Qaidam Basin[J]. Geoscience, 2017, 31(4): 779-790. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704012.htm [18] 赵海彤, 刘成林, 焦鹏程, 等. 罗布泊干盐湖钙芒硝形貌特征及生长影响因素[J]. 矿物学报, 2014, 34(1): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401016.htmZHAO Haitong, LIU Chenglin, JIAO Pengcheng, et al. Morphology characteristics and influential factors of glauberite growth from Lop Nur Salt Lake, China[J]. Acta Mineralogica Sinica, 2014, 34(1): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401016.htm [19] 刘伟新, 俞凌杰, 张文涛, 等. 川东南龙马溪组页岩微观孔隙结构特征[J]. 海洋地质与第四纪地质, 2016, 36(3): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603015.htmLIU Weixing, YU Lingjie, ZHANG Wentao, et al. Micro-pore structure of the Longmaxi shale from southeast Sichuan Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603015.htm [20] 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453LIU Weixin, BAO Fang, YU Lingjie, et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Experiment, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453 [21] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. [22] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]//SPE Unconventional Gas Conference and Exhibition. Woodlands, Texas, USA: SPE, 2011. [23] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. [24] 刘文卿, 汤达祯, 潘伟义, 等. 北美典型页岩油地质特征对比及分类[J]. 科技通报, 2016, 32(11): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201611003.htmLIU Wenqing, TANG Dazhen, PAN Weiyi, et al. Comparison of geological characteristics and types of typical shale oil in North America[J]. Bulletin of Science and Technology, 2016, 32(11): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201611003.htm [25] KLAVER J, DESBOIS G, URAI J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103: 12-25. [26] 张文涛, 胡文瑄, 鲍芳, 等. 基于流体吸入实验的页岩纳米孔隙连通性分析方法[J]. 石油实验地质, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415ZHANG Wentao, HU Wenxuan, BAO Fang, et al. A method for analyzing nanopore connectivity of shale using a fluid suction experiment[J]. Petroleum Geology & Experiment, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415 [27] 杨清堂. 钙芒硝的成因和沉积环境简析[J]. 沉积学报, 1989, 7(3): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198903015.htmYANG Qingtang. The origin and sedimentary environment analysis of glauberite[J]. Acta Sedimentologica Sinica, 1989, 7(3): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198903015.htm [28] 刘成林, 王弭力, 焦鹏程, 等. 罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究[J]. 地质论评, 2002, 48(4): 437-443. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200204015.htmLIU Chenglin, WANG Mili, JIAO Pengcheng, et al. Formation of pores and brine reserving mechanism of the aquifers in Quaternary potash deposits in Lop Nur Lake, Xinjiang, China[J]. Geological Review, 2002, 48(4): 437-443. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200204015.htm [29] 承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006, 28(6): 604-608. doi: 10.11781/sysydz200606604CHENG Qiuquan, CHEN Hongyu, FAN Ming, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006, 28(6): 604-608. doi: 10.11781/sysydz200606604