Aryl isoprenoids and their significance for inter-salt shale oil exploration in the Jianghan Basin
-
摘要: 通过对江汉盆地潜江凹陷王场地区王云11井潜江组潜33下亚段和潜34亚段4个韵律层部分取心样品的全岩热解和有机抽提物分子地球化学分析,将盐间页岩的沉积环境划分为半咸水—咸水湖相和咸水湖相2种类型。前者分布范围相对广泛,沉积水体分层明显,以富含伽马蜡烷和2,3,6-三甲基-芳基异戊间二烯烷烃为特征;后者分布范围相对局限,以较高丰度的3,4,5-三甲基—芳基异戊间二烯烷烃为特征,同时缺少水体分层的分子标志物证据。较高的热解S1含量、S1/w(TOC)比值以及与盐间页岩储层埋藏深度不匹配的萜烷Ts/(Ts+Tm)比值和规则甾烷异构化参数分析揭示,盐间页岩中游离油富集段主要分布在半咸水—咸水环境形成的富有机质纹层发育段,为一定程度的成熟油气沿着顺层微裂缝侧向运移提供了有利场所。通过常规甾萜烷和芳基异戊间二烯烷烃特殊生物标志物组合分析,提出盐间页岩油勘探应关注潜三段和潜四段内几个最大湖泛面,除了继续王场构造区开发试验外,应该加大蚌湖洼陷成熟烃源区的勘探力度。Abstract: Fifteen inter-salt shale cores were collected from the well WY 11, Qianjiang Sag, Jianghan Basin, and the sampling intervals include four of the salt cycles in the Eq3 Member of the Eogene Qianjiang Formation. Bulk geochemical data were obtained by whole rock pyrolysis, and gas chromatography-mass spectrometry (GC-MS) analyses were conducted for molecular compositions of saturated and aromatic biomarkers. Our results separated the analyzed samples into two broad categories corresponding to brackish-saline and saline lacustrine settings. Inter-salt shales deposited in the brackish-saline lakes occur over large geographic areas with relatively strong water column stratification, and are characterized by the presence of abundant gammacerane and 2, 3, 6-trimethyl-aryl isoprenoid alkanes. In contrast, inter-salt shales deposited in saline lakes tend to distribute in small areas, and the presence of abundant 3, 4, 5-trimethyl-aryl isoprenoid alkanes with lower contents of gammacerane is consistent with relatively shallow water depth. High pyrolysis S1 contents, S1/w(TOC) ratios, Ts/(Ts+Tm), and 20S/(20S+20R) and (αββ/ααα+αββ) ratios of C29 steranes are good indicators for the inter-salt shales that were deposited in the brackish-saline settings and are ideal habitats for lacustrine shale oil enrichment, since the presence of organic rich lamina favor the updip, lateral oil migration along the bedding parallel microfractures. According to the common hopane and sterane parameters as well as aryl isoprenoid biomarker distributions, it is suggested that inter-salt shale oil exploration in the Jianghan Basin should be focused on organic rich shale beds in the Eq3 and Eq4 members deposited during the maximum lake expansion. More efforts were suggested to be invested in the mature source kitchens of the Banghu Sag in addition to the continuing pilot production tests in the Wangchang area.
-
Key words:
- aryl isoprenoids /
- biomarkers /
- inter-salt shale oil /
- Qianjiang Formation /
- Jianghan Basin
-
图 10 地质样品中常见的芳基异戊间二烯烷烃化合物分子结构[35]
Figure 10. Chemical structures of aryl isoprenoids commonly found in geological samples
表 1 江汉盆地潜江凹陷王云11井盐间页岩样品基本情况和热解分析结果
Table 1. Sample description and Rock-Eval pyrolysis data of inter-salt shale samples from well WY 11, Qianjiang Sag, Jianghan Basin
样号 层位 盐韵律层 井深/m S1/(mg∙g-1) S2/(mg∙g-1) PI Tmax/℃ w(TOC)/% IH/(mg∙g-1) IO/(mg∙g-1) MINC/% 15 潜23 1 309.31 8.88 60.64 0.13 431 8.22 738 15 7.23 14 潜33下 6 1 632.30 7.03 32.93 0.18 425 6.20 531 17 1.79 13 潜33下 6 1 633.00 4.09 28.71 0.12 430 5.05 569 18 1.48 12 潜33下 7 1 645.10 9.21 14.97 0.38 426 3.57 419 24 1.14 11 潜33下 7 1 646.49 21.11 22.57 0.48 421 5.74 393 7 3.37 10 潜33下 7 1 649.21 13.09 14.18 0.48 425 3.98 356 13 5.45 9 潜34 10 1 704.74 5.97 3.22 0.65 407 1.43 225 18 0.25 8 潜34 10 1 705.89 11.07 10.16 0.52 421 3.62 281 21 2.93 7 潜34 10 1 707.29 14.34 10.05 0.59 420 3.72 270 29 3.97 6 潜34 10 1 708.55 6.48 4.91 0.57 420 2.52 195 27 6.72 5 潜34 10 1 710.59 9.93 9.53 0.51 425 3.50 272 32 3.04 4 潜34 10 1 714.33 5.13 4.12 0.55 420 1.84 224 50 2.28 3 潜34 12 1 749.26 25.02 18.86 0.57 417 4.93 383 18 8.23 2 潜34 12 1 747.02 4.29 24.01 0.15 435 4.40 546 16 2.49 1 潜34 12 1 746.14 4.02 16.61 0.20 427 3.36 494 24 1.69 注:MINC表示无机碳。 表 2 江汉盆地潜江凹陷王云1井岩心样品的烷烃生物标志物参数和部分单体化合物的绝对浓度
Table 2. Paraffin biomarker parameters and absolute concentration of some monomer compounds in core samples from WY 11, Qianjiang Sag, Jianghan Basin
参数 样品号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 油 Pr/Ph 0.30 0.26 0.22 0.12 0.17 0.21 0.23 0.22 0.20 0.28 0.17 0.27 0.24 0.26 0.12 0.22 Pr/nC17 0.96 0.48 0.56 0.49 0.56 0.59 0.41 0.66 0.54 0.64 0.47 0.50 0.86 1.16 0.85 0.55 Ph/nC18 2.88 2.63 2.97 2.49 1.98 2.13 1.89 2.07 2.25 2.17 2.02 2.32 5.15 5.38 8.91 2.13 EOP偶碳优势 1.09 0.89 1.11 2.41 1.55 1.37 1.39 1.54 1.50 1.20 1.50 1.28 1.07 1.03 1.08 1.38 C29-20S/(20S+20R)ααα甾烷比值 0.45 0.45 0.46 0.51 0.59 0.53 0.59 0.54 0.54 0.55 0.52 0.49 0.31 0.33 0.33 0.56 C29-αββ/(ααα+αββ)甾烷比值 0.25 0.27 0.27 0.46 0.52 0.51 0.52 0.51 0.50 0.45 0.45 0.41 0.21 0.23 0.24 0.51 C27/C29甾烷 1.57 1.76 1.56 1.21 0.94 0.85 1.02 0.77 0.98 1.57 1.17 0.98 0.98 1.01 2.08 1.23 C28/C29甾烷 0.85 0.80 0.80 0.61 0.46 0.55 0.66 0.52 0.47 0.67 0.49 0.37 0.45 0.43 0.84 0.72 Ts/(Ts+Tm) 0.11 0.08 0.10 0.20 0.27 0.28 0.26 0.28 0.28 0.20 0.09 0.18 0.07 0.06 0.14 0.20 伽马蜡烷/(伽马蜡烷+C31升藿烷) 0.68 0.72 0.70 0.69 0.72 0.74 0.72 0.44 0.75 0.64 0.71 0.43 0.52 0.50 0.82 0.74 C35/C34藿烷 0.95 0.79 0.87 3.57 1.43 1.35 1.27 1.16 1.40 0.99 1.21 0.99 0.61 0.54 0.94 1.74 MPI1-1 1.01 0.78 1.15 0.60 0.57 0.65 0.68 0.65 0.58 0.58 0.58 0.61 0.77 0.81 0.33 0.46 MPI1-2 1.30 1.00 1.34 0.66 0.61 0.63 0.66 0.64 0.60 0.69 0.68 0.68 1.08 1.18 0.88 0.49 DBT/菲 0.29 0.32 0.33 0.66 0.50 0.62 0.64 0.54 0.47 0.60 0.87 0.95 1.57 1.65 0.90 0.58 nC17/S1/(mg∙g-1) 4.10 8.03 14.83 2.11 5.29 9.08 4.33 6.38 1.21 13.02 0.83 15.05 14.84 23.15 8.11 - nC27/S1/(mg∙g-1) 4.88 24.13 9.21 2.66 5.40 7.90 6.81 6.58 2.14 9.96 0.61 15.69 16.08 13.69 6.38 - Ph/S1/(mg∙g-1) 15.60 44.96 23.24 10.38 17.38 22.47 12.40 19.92 5.75 22.74 1.70 28.96 57.57 59.84 45.98 - Pr/S1/(mg∙g-1) 4.66 11.58 5.13 1.30 3.02 4.70 2.80 4.36 1.16 6.42 0.28 7.83 13.77 15.85 5.44 - 伽马蜡烷/S1/(mg∙g-1) 0.87 2.61 2.78 0.57 2.20 2.11 1.04 1.42 0.34 1.66 0.17 2.41 1.37 1.72 1.90 - C30藿烷/S1/(mg∙g-1) 0.82 2.32 2.14 0.38 1.22 1.32 0.69 0.97 0.21 1.32 0.09 1.44 2.82 3.73 2.15 - C27-αααR甾烷/S1/(mg∙g-1) 0.99 3.15 3.05 0.70 0.76 0.81 0.52 0.59 0.18 1.00 0.05 0.87 1.52 2.07 2.65 - C29-αααR甾烷/S1/(mg∙g-1) 0.63 1.79 1.96 0.58 0.81 0.95 0.51 0.77 0.18 0.64 0.04 0.89 1.55 2.05 1.27 - 二苯并噻吩/S1/(mg∙g-1) 0.02 0.06 0.01 0.01 0.12 0.06 0.03 0.08 0.02 0.10 0.00 0.08 0.39 0.11 0.12 - 菲/S1/(mg∙g-1) 0.05 0.18 0.02 0.02 0.24 0.09 0.04 0.15 0.04 0.17 0.00 0.08 0.25 0.07 0.13 - 注:油样的深度为1 677.86~1 773.12 m。 -
[1] 方志雄. 潜江盐湖盆地盐间沉积的石油地质特征[J]. 沉积学报, 2002, 20(4): 608-613. doi: 10.3969/j.issn.1000-0550.2002.04.012FANG Zhixiong. Hydrocarbon exploration signification of intersalt sediments in Qianjiang Saline Lake Basin[J]. Acta Sedi-mentologica Sinica, 2002, 20(4): 608-613. doi: 10.3969/j.issn.1000-0550.2002.04.012 [2] 郑有恒. 江汉盆地潜江凹陷潜江组岩性油藏勘探方向及对策[J]. 石油实验地质, 2010, 32(4): 330-333. doi: 10.3969/j.issn.1001-6112.2010.04.005ZHENG Youheng. Exploration direction and strategy for lithologic accumulations in Qianjiang Formation of the Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2010, 32(4): 330-333. doi: 10.3969/j.issn.1001-6112.2010.04.005 [3] BRASSELL S C, EGLINTON G, SHENG Guoying, et al. Biological markers in lacustrine Chinese oil shales[M]//FLEET A J, KELTS K, TALBOT M R. Lacustrine petroleum source rocks. Geological Society, London, Special Publication, 1988, 40(1): 299-308. [4] FAN Pu, LUO Binjie, HUANG Ruchang, et al. Formation and migration of continental oil and gas in China (Ⅱ): evolution and migration of oil and gas[J]. Scientific Sinica, 1980, 23(11): 1417-1426. [5] SHENG Guoying, FU Jiamo, BRASSELL S C, et al. Sulphur-containing compounds in sulphur-rich crude oils from hypersaline lake sediments and their geochemical implications[J]. Chinese Journal of Geochemistry, 1987, 6(2): 115-126. doi: 10.1007/BF02872213 [6] FU Jiamo, SHENG Guoying, LIU Dehan. Organic geochemical characteristics of major types of terrestrial petroleum source rocks in China[M]//FLEET A J, KELTS K, TALBOT M R. Lacustrine petroleum source rocks. London: Blackwell Scientific Publications, 1988: 279-289. [7] WANG D, ZHENG X. The formation, evolution and petroleum accumulation in Jianghan fault and saline structure[C]//International Conference on Basin Tectonics and Hydrocarbon Accumulation. Nanjing: Nanjing University, 1993. [8] DAMSTÉ J S, KENIG F, KOOPMANS M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900. doi: 10.1016/0016-7037(95)00073-9 [9] 刘明, 陈仲宇, 李凯. 潜北地区王场构造潜四段高成熟油的油源和运移方向[J]. 江汉石油科技, 2010, 20(4): 1-4.LIU Ming, CHEN Zhongyu, LI Kai. Oil source and migration direction of the highly mature oil in the fourth member of Qianjiang Formation, the Wangchang structure of Qianbei area[J]. Jianghan Petroleum Technology, 2010, 20(4): 1-4. [10] PHILP R P, FAN Zhaoan. Geochemical investigation of oils and source rocks from Qianjiang Depression of Jianghan Basin, a terrigenous saline basin, China[J]. Organic Geochemistry, 1987, 11(6): 549-562. doi: 10.1016/0146-6380(87)90009-X [11] GRICE K, SCHAEFFER P, SCHWARK L, et al. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids[J]. Organic Geochemistry, 1996, 25(3/4): 131-147. [12] GRICE K, SCHOUTEN S, PETERS K E, et al. Molecular isotopic characterization of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China[J]. Organic Geochemistry, 1998, 29(5/7): 1745-1764. [13] SCHAEFLE J, LUDWIG B, ALBRECHT P, et al. Hydrocarbures aromatiques d'origine geologique. Ⅱ. Nouveaux carotanoïdes aromatiques fossiles[J]. Tetrahedron Letters, 1977, 18(41): 3673-3676. doi: 10.1016/S0040-4039(01)83324-4 [14] OSTROUKHOV S B, AREF'EV O A, MAKUSHINA V M. Monocyclic aromatic hydrocarbons with isoprenoid chains[J]. Neftekhimiya, 2015, 22(6): 723-728. [15] SUMMONS R E, POWELL T G. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology[J]. Nature, 1986, 319: 763-765. doi: 10.1038/319763a0 [16] SUMMONS R E, POWELL T G. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 557-566. doi: 10.1016/0016-7037(87)90069-X [17] YU Xinke, FAN Pu, PHILP R P. Novel biomarkers found in South Florida Basin[J]. Organic Geochemistry, 1990, 15(4): 433-438. doi: 10.1016/0146-6380(90)90170-5 [18] REQUEJO A G, ALLAN J, CREANEY S, et al. Aryl isoprenoids and diaromatic carotenoids in Paleozoic source rocks and oils from the Western Canada and Williston Basins[J]. Organic Geochemistry, 1992, 19(1/3): 245-264. [19] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htmJIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [20] 吴世强, 唐小山, 杜小娟, 等. 江汉盆地潜江凹陷陆相页岩油地质特征[J]. 东华理工大学学报(自然科学版), 2013, 36(3): 282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006WU Shiqiang, TANG Xiaoshan, DU Xiaojuan, et al. Geologic characteristics of continental shale oil in the Qianjiang Depression, Jianghan Salt Lake Basin[J]. Journal of East China Institute of Technology (Natural Science Edition), 2013, 36(3): 282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006 [21] LI Maowen, MA Xiaoxiao, LI Zhiming, et al. Emerging shale oil plays in hypersaline lacustrine Qianjiang Formation, Jianghan Basin, Central China[C]//Proceedings of the 6th Unconventional Resources Technology Conference (URTeC). Houston: AAPG, 2018. [22] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htmJIANG Qigui, LI Maowen, QIAN Menhui, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm [23] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. New York: Springer-Verlag, 1984. [24] JIANG Chunqing, LI Maowen, VAN DUIN A C T. Inadequate separation of saturate and monoaromatic hydrocarbons in crude oils and rock extracts by alumina column chromatography[J]. Organic Geochemistry, 2000, 31(7/8): 751-756. [25] MA Xiaoxiao, LI Maowen, PANG Xiongqi, et al. Paradox in bulk and molecular geochemical data and implications for hydrocarbon migration in the inter-salt lacustrine shale oil reservoir, Qianjiang Formation, Jianghan Basin, central China[J]. International Journal of Coal Geology, 2019, 209: 72-88. doi: 10.1016/j.coal.2019.05.005 [26] JARVIE D M. Shale resource systems for oil and gas: part 2-shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century. Humble, Texas: AAPG, 2012: 89-119. [27] BEHAR F, LEWAN M D, LORANT F, et al. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J]. Organic Geochemistry, 2003, 34(4): 575-600. doi: 10.1016/S0146-6380(02)00241-3 [28] CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23. doi: 10.1016/0016-7037(80)90173-8 [29] LI Maowen, FOWLER M G, OBERMAJER M, et al. Geochemical characterization of Middle Devonian oils in NW Alberta, Canada: possible source and maturity effect on pyrrolic nitrogen compounds[J]. Organic Geochemistry, 1999, 30(9): 1039-1057. doi: 10.1016/S0146-6380(99)00049-2 [30] OURISSON G, ALBRECHT P, DAN ROHMER M. The hopanoids: palaeochemistry and biochemistry of a group of natural products[J]. Pure and Applied Chemistry, 1979, 51(4): 709-729. doi: 10.1351/pac197951040709 [31] OURISSON G, ALBRECHT P, ROHMER M. The microbial origin of fossil fuels[J]. Scientific American, 1984, 251: 44-51. [32] ROHMER M. The hopanoids, prokaryotic triterpenoids and sterol surrogates[M]//SCHRINER E. Surface structures of micro-organisms and their interactions with the mammalian host. Weinlein, Germany: VCH Publishing, 1987: 227-242. [33] KOOPMANS M P, KÖSTER J, VAN KAAM-PETERS H M E, et al. Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia[J]. Geochimica et Cosmochimica Acta, 1996, 60(22): 4467-4496. doi: 10.1016/S0016-7037(96)00238-4 [34] KOOPMANS M P, SCHOUTEN S, KOHNEN M E L, et al. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4873-4876. doi: 10.1016/S0016-7037(96)00303-1 [35] PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993. [36] HARTGERS W A, SINNINGHE DAMSTÉ J S, KOOPMANS M P, et al. Sedimentary evidence for a diaromatic carotenoid with an unprecedented aromatic substitution pattern[J]. Journal of Chemical Society Chemical Communication, 1993(23): 1715-1716. doi: 10.1039/C39930001715 [37] HARTGERS W A, DAMSTÉ J S S, REQUEJO A G, et al. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids[J]. Organic Geochemistry, 1994, 22(3/5): 703-725. [38] CLIFFORD D J, CLAYTON J L, SINNINGHE DAMSTÉ J S. 2, 3, 6-/3, 4, 5-trimethyl substituted diaryl carotenoid derivatives (chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin[J]. Organic Geochemistry, 1998, 29(5/7): 1253-1267. [39] SUN Yongge, XU Shiping, LU Hong, et al. Source facies of the Paleozoic petroleum systems in the Tabei Uplift, Tarim Basin, NW China: implications from aryl isoprenoids in crude oils[J]. Organic Geochemistry, 2003, 34(4): 629-634. doi: 10.1016/S0146-6380(03)00063-9 [40] VINNICHENKO G, JARRETT A J M, HOPE J M, et al. Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia[J]. Geobiology, 2019, 17(4): 360-380. doi: 10.1111/gbi.12331 [41] ELLIS L, KAGI R I, ALEXANDER R. Separation of petroleum hydrocarbons using dealuminated mordenite molecular sieve. I. Monoaromatic hydrocarbons[J]. Organic Geochemistry, 1992, 18(5): 587-593. doi: 10.1016/0146-6380(92)90084-B [42] DEWAR M J S, THIEL W. Ground states of molecules. 38. The MNDO method. Approximations and parameters[J]. Journal of American Chemical Society, 1977, 99(15): 4899-4907. doi: 10.1021/ja00457a004 [43] STEWART J J P. Optimization of parameters for semiempirical methods I. Method[J]. Journal of Computational Chemistry, 1989, 10(2): 209-220. doi: 10.1002/jcc.540100208 [44] 王典敷, 汪仕忠. 盐湖油田地质[M]. 北京: 石油工业出版社, 1998: 15-54.WANG Dianfu, WANG Shizhong. Reservoir geology of saline lake[M]. Beijing: Petroleum Industry Press, 1998: 15-54. [45] 王国力, 张永生, 杨玉卿, 等. 江汉盆地潜江凹陷古近系潜江组盐间非砂岩储层评价[J]. 石油实验地质, 2004, 26(5): 462-468. doi: 10.3969/j.issn.1001-6112.2004.05.011WANG Guoli, ZHANG Yongsheng, YANG Yuqing, et al. Evaluation of nonsandstone reservoirs between salt beds of the Paleogene Qianjiang Formation in the Qianjiang Depression of the Jianghan Basin[J]. Petroleum Geology & Experiment, 2004, 26(5): 462-468. doi: 10.3969/j.issn.1001-6112.2004.05.011 [46] 戴世昭. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社, 1997: 57-93.DAI Shizhao. Petroleum geology of Jianghan Saline Basin[M]. Beijing: Petroleum Industry Press, 1997: 57-93.