Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin
-
摘要: 碳酸盐岩夹层型页岩油为苏北盆地页岩油勘探的主要类型之一,高邮凹陷深凹—内坡带是阜宁组二段(E1f2)碳酸盐岩夹层型页岩油勘探的有利区。为进一步明确高邮凹陷E1f2页岩油“甜点”层段,运用扫描电镜、高温压汞、氮气吸附、CT扫描、X衍射、三轴力学、多温阶热解等多种研究方法,对比分析了E1f2各页岩段的源岩品质、储层品质、工程条件及可动性。E1f2页1、E1f2页2为干热还原咸水的沉积环境,发育优质页岩;有机质丰度较高,平均有机碳含量分别为2.33%和1.63%,干酪根类型以Ⅰ、Ⅱ1为主,生烃条件最为有利;黏土矿物层片间孔较发育,储集空间以宏孔、裂缝为主;E1f2页1—E1f2页5脆性矿物含量在59.1%~63.6%,黏土矿物以伊/蒙混层和伊利石为主,E1f2页2脆性指数最高为64.25%;在埋深大于3 500 m的范围内伊蒙混层向伊利石转化明显,页岩脆性及可压裂改造条件更好。高邮凹陷深凹—内坡带E1f2页1、E1f2页2页岩层段是下一步苏北盆地页岩油勘探方向之一。Abstract: "Carbonate sandwich shale oil" is a main exploration target in the Subei Basin. The deep depression-inner slope zone of the Gaoyou Sag is a favorable area for the exploration of "carbonate sandwich shale oil" in the second member of Funing Formation (E1f2). The source rock and reservoir quality, engineering conditions and movability of each shale section of E1f2 were analyzed in order to further clarify "sweet spot" sections by using scanning electron microscopy, mercury intrusion at elevated temperature, nitrogen adsorption, CT scanning, X-ray diffraction, triaxial mechanics, multi-temperature pyrolysis and other research methods. The E1f2shale1 and E1f2shale2 in the deep depression-inner slope zone of Gaoyou Sag were deposited in a dry, hot, reducing and brackish water environment, developing favorable shale with high organic matter content. The TOC contents are 2.33% and 1.63%, respectively Kerogens are mainly of types Ⅰ and Ⅱ1, with the most favorable conditions for hydrocarbon generation. The interlamellar pores were well developed, and the reservoir space is dominated by macropores and fractures. The brittle mineral content of E1f2shale1 to E1f2shale5 is 59.1%-63.6%, and the clay minerals are dominated by illite/montmorillonite mixed layer and illite. The brittleness index of E1f2shale2 is 64.25% at most. In the range of burial depth greater than 3 500 m, the conversion of the illite/montmorillonite mixed layer to illite is obvious, and the shale brittleness and fracturing transformation conditions are better. The E1f2shale1 and E1f2shale2 in the deep depression-inner slope zone of Gaoyou Sag are exploration directions for shale oil in the Subei Basin.
-
图 2 苏北盆地高邮凹陷深凹—内坡带阜宁组二段各页岩段储集空间及类型
a.扫描电镜,H2井,E1f2页2,黏土矿物片间孔,孔径为0.97 μm;b.扫描电镜,H28井,E1f2页2,黏土矿物片间孔,孔径为0.23~2.08 μm;c.扫描电镜,H2井,E1f2页2,白云石晶间孔,孔径为0.31~1.62 μm;d.扫描电镜,H28井,E1f2页1,黄铁矿晶间孔,孔径为0.5~1 μm;e.扫描电镜,D1井,E1f2页2,方解石晶内溶孔,孔径为0.5~1 μm;f.扫描电镜,H2井,E1f2页2,有机质孔,孔径为1~8.2 μm;g.CT扫描,H2井,E1f2页2,云质含量高页理较发育,孔隙呈层状展布,孔隙度3.11%;h.CT扫描,HX28井,E1f2页1,块样,孔隙呈层聚集状分布,孔隙度5.11%;i.岩心,HX28井,E1f2页1,顺层缝,裂缝含油;j.岩心,FSX1井,E1f2页4,正向剪切缝含油;k.岩心,H2井,E1f2页2,纹层状—薄层状云质泥岩;l.普通薄片,HX28井,E1f2页1,平行层理微裂缝6条,裂缝极宽大,开度20~30 μm;m.普通薄片,HX2井,E1f2页2,大量树根状、水波纹状裂缝,开度10~40 μm;n.荧光薄片,H2井,E1f2页2,溶蚀裂缝充填硅质和暗色有机质,开度20~100 μm;o.普通薄片,WX6井,E1f2页2,发育平行层理微裂缝,开度50~ 200 μm;p.铸体薄片,H2井,E1f2页2,构造—溶蚀裂缝,开度10~60 μm
Figure 2. Reservoir space and type of each shale member of E1f2 in deep depression-inner slope zone of Gaoyou Sag, Subei Basin
表 1 苏北盆地高邮凹陷深凹—内坡带阜宁组二段综合评价
Table 1. Comprehensive evaluation of E1f2 in deep depression-inner slope zone of Gaoyou Sag, Subei Basin
层位 碳酸盐岩夹层厚度/m w(TOC)/% 氯仿沥青“A”/% S1/(mg·g-1) (S1+S2)/(mg·g-1) S1/w(TOC)/(mg·g-1) Tmax/℃ 孔隙度/% 脆性矿物/% 脆性系数/% E1f2页1 5~15 2.33 0.44 0.77 10.68 0.32 444 3.21 63.4 44.39 E1f2页2 5~10 1.63 0.18 0.30 7.55 0.17 443 3.20 60.1 64.25 E1f2页3 5~10 0.97 0.09 0.08 5.22 0.05 437 2.98 60.5 42.38 E1f2页4 5~10 1.24 0.17 0.55 6.63 0.36 440 1.30 63.6 46.94 E1f2页5 5~10 0.83 0.13 0.21 2.56 0.19 429 1.70 59.1 46.75 注:表中数值为平均值。 -
[1] 杨伟伟, 冯渊, 杨勇, 等. 页岩油藏的成藏条件及中国页岩油藏有利区展布[J]. 新疆石油地质, 2015, 36(3): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201503002.htmYANG Weiwei, FENG Yuan, YANG Yong, et al. Conditions of shale oil accumulation and distribution of favorable areas in China[J]. Xinjiang Petroleum Geology, 2015, 36(3): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201503002.htm [2] 付亚荣. 中国页岩气发展现状及前景展望[J]. 石油地质与工程, 2013, 27(6): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201306006.htmFU Yarong. Current development status and prospect of shale gas in China[J]. Petroleum Geology and Engineering, 2013, 27(6): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201306006.htm [3] 赵贤正, 周立宏, 浦秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htmZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm [4] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htmJIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petro-leum Exploration and Development, 2017, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm [5] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501003.htmZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501003.htm [6] 宁方兴. 济阳坳陷页岩油富集主控因素[J]. 石油学报, 2015, 36(8): 905-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508002.htmNING Fangxing. The main control factors of shale oil enrichment in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(8): 905-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508002.htm [7] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htmZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characte-ristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm [8] 邹才能, 潘松圻, 赵群. 论中国"能源独立"战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002023.htmZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenge and significance of China's "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002023.htm [9] 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. doi: 10.3969/j.issn.1001-8719.2020.01.001ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. doi: 10.3969/j.issn.1001-8719.2020.01.001 [10] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htmZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [11] 付茜. 中国页岩油勘探开发现状、挑战及前景[J]. 石油钻采工艺, 2015, 37(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901011.htmFU Qian. The status, challenge and prospect of shale oil exploration and development in China[J]. Oil Drilling & Production Technology, 2015, 37(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901011.htm [12] 周庆凡, 杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htmZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htm [13] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htmJIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm [14] POLLASTRO R M. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578. [15] 柳波, 郭小波, 黄志龙, 等. 页岩油资源潜力预测方法探讨: 以三塘湖盆地马朗凹陷芦草沟组页岩油为例[J]. 中南大学学报(自然科学版), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htmLIU Bo, GUO Xiaobo, HUANG Zhilong, et al. Discussion on prediction method for hydrocarbon resource potential of shale oil: taking Lucaogou Formation shale oil of Malang Sag as case[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htm [16] 郑开富, 彭霞玲. 苏北盆地上白垩统-第三系页岩油气成藏层位及有利区带[J]. 地质学刊, 2013, 37(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201301028.htmZHENG Kaifu, PENG Xialing. Hydrocarbon accumulation and favorable zone of shale oil and gas in upper Cretaceous-Neogene of Subei Basin[J]. Journal of Geology, 2013, 37(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201301028.htm [17] 张廷山, 彭志, 祝海华, 等. 海安凹陷曲塘次凹阜二段页岩油形成条件及勘探潜力[J]. 地质科技情报, 2016, 35(2): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602035.htmZHANG Tingshan, PENG Zhi, ZHU Haihua, et al. Forming conditions and exploration potential of shale oil from member 2 of Funing Formation in Qutang Subsag, Hai'an Sag[J]. Geological Science and Technology Information, 2016, 35(2): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602035.htm [18] 王海方. 苏北盆地古近系页岩油储层有效裂缝识别[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htmWANG Haifang. Recognition of effective fractures within the oil shale in the fourth member of Funing Formation in Northern Jiangsu Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htm [19] 王红伟, 段宏亮. 盐城凹陷阜二段页岩油形成条件及富集规律研究[J]. 复杂油气藏, 2016, 9(3): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201603004.htmWANG Hongwei, DUAN Hongliang. Formation condition and enrichment rule of shale oil in the second member of Funing Formation in Yancheng Sag[J]. Complex Hydrocarbon Reservoirs, 2016, 9(3): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201603004.htm [20] 陈永昌, 张金川, 苏慧, 等. 东濮凹陷北部沙三段页岩油成藏地质条件分析[J]. 特种油气藏, 2014, 21(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htmCHEN Yongchang, ZHANG Jinchuan, SU Hui, et al. Analysis of geologic conditions for Es3 shale oil accumulation in the northern Dongpu Sag[J]. Special Oil and Gas Reservoris, 2014, 21(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htm [21] 李文浩, 卢双舫, 薛海涛, 等. 江汉盆地新沟嘴组页岩油储层物性发育主控因素[J]. 石油与天然气地质, 2016, 37(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601009.htmLI Wenhao, LU Shuangfang, XUE Haitao, et al. Major controlling factors of poroperm characteristics of shale oil reservoirs in the Xingouzui Formation, Jianghan Basin[J]. Oil & Gas Geology, 2016, 37(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601009.htm [22] 聂海宽, 张金川. 页岩气储层类型和特征研究: 以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225. doi: 10.11781/sysydz201103219NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: a case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225. doi: 10.11781/sysydz201103219 [23] 付茜, 刘启东, 刘世丽, 等. 中国"夹层型"页岩油勘探开发现状及前景[J]. 石油钻采工艺, 2019, 41(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901011.htmFU Qian, LIU Qidong, LIU Shili, et al. Exploration & development status and prospect of sandwich-type shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901011.htm [24] 邱旭明, 刘玉瑞, 傅强. 苏北盆地上白垩统-第三系层序地层与沉积演化[M]. 北京: 地质出版社, 2006.QIU Xuming, LIU Yurui, FU Qiang. Sequence stratigraphy and sedimentary evolution of Upper Cretaceous Tertiary in Subei Basin[M]. Beijing: Geological Publishing House, 2006. [25] 程海生, 刘世丽, 段宏亮. 苏北盆地阜宁组泥页岩储层特征[J]. 复杂油气藏, 2015, 8(3): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201503003.htmCHENG Haisheng, LIU Shili, DUAN Hongliang. Shale reservoir characteristics of Funing Formation in Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2015, 8(3): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201503003.htm [26] 赵习, 刘波, 郭荣涛, 等. 储层表征技术及应用进展[J]. 石油实验地质, 2017, 39(2): 287-294. doi: 10.11781/sysydz201702287ZHAO Xi, LIU Bo, GUO Rongtao, et al. Reservoir characterization and its application to development[J]. Petroleum Geology & Experiment, 2017, 39(2): 287-294. doi: 10.11781/sysydz201702287 [27] 俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究: 以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604017.htmYU Yuxi, LUO Xiaorong, LEI Yuhong, et al. Characterization of lacustrine shale pore structure: an example from the Upper-Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(4): 716-726. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604017.htm [28] 格雷格S J, 辛K S W. 吸附、比表面与孔隙率[M]. 高敬宗, 译. 北京: 化学工业出版社, 1989.GREG S J, SINGK S W. Adsorption, surface area and porosity[M]. GAO Jingzong, trans. Beijing: Chemical Industry Press, 1989. [29] 李文镖, 卢双舫, 李俊乾, 等. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901003.htmLI Wenbiao, LU Shuangfang, LI Junqian, et al. The coupling relationship between material composition and pore microstructure of southern China marine shale[J]. Natural Gas Geoscience, 2019, 30(1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901003.htm [30] 刘平, 陈书平, 刘世丽, 等. 苏北盆地阜宁组泥页岩裂缝类型及形成期次[J]. 西安石油大学学报(自然科学版), 2014, 29(6): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201406003.htmLIU Ping, CHEN Shuping, LIU Shili, et al. Types and forming epochs of the fractures in the shale of Funing Formation of Subei Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(6): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201406003.htm [31] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5): 356-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205036.htmTANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5): 356-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205036.htm [32] 彭金宁, 邱岐, 王东燕, 等. 苏北盆地古近系阜宁组致密油赋存状态与可动用性[J]. 石油实验地质, 2020, 42(1): 53-59. doi: 10.11781/sysydz202001053PENG Jinning, QIU Qi, WANG Dongyan, et al. Occurrence and recoverability of tight oil in Paleogene Funing Formation, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 53-59. doi: 10.11781/sysydz202001053 [33] 王秀宁, 巨明霜, 杨文胜, 等. 致密油藏动态渗吸排驱规律与机理[J]. 油气地质与采收率, 2019, 26(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903012.htmWANG Xiuyu, JU Mingshuang, YANG Wensheng, et al. Dynamic imbibition principles and mechanism of tight oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903012.htm