TSM prototype basins on the Neoproterozoic Yangtze Craton
-
摘要: 以TSM盆地原型分析理论为指导,基于大量野外露头、最新钻井和地球物理资料,结合前人研究成果,对扬子克拉通新元古代的盆地原型进行了恢复。研究认为受控于从青白口纪会聚到南华—震旦纪离散两大不同板块构造环境和体制转变下的4个时期演化影响,扬子克拉通新元古代经历了4个阶段的盆地原型演变,分别为①青白口纪早期(ca.1 000~820 Ma),扬子西缘、北缘及内部的弧后扩张盆地,扬子东南缘的弧后前陆盆地;②青白口纪晚期(ca.820~720 Ma),扬子西缘、北缘的弧后扩张盆地,扬子东南缘和内部的拉张断陷盆地;③南华纪时期(720~635 Ma),扬子东南缘、西缘、北缘和内部的裂谷盆地;④震旦纪时期(635~541 Ma),川中、万源—达州及鄂西—渝东的克拉通台内裂陷盆地,扬子北缘和东南缘的离散陆缘坳陷盆地。综合分析提出南华纪裂谷盆地、震旦纪台内裂陷盆地和离散陆缘坳陷盆地是最有利于烃源岩发育的盆地原型。陕南—川东北、湘黔渝临区、鄂西和川中地区是扬子烃源岩最有利发育区,也是今后扬子深层—超深层常规天然气与非常规页岩气勘查重点区域。Abstract: TSM basin analysis of Neoproterozoic prototype basins on Yangtze Craton, South China were studied using a large number of field outcrop sections, latest drilling data, and numerous previous studies. Controlled by the Qingbaikou convergent continental margin to the Nanhua-Sinian divergent continental margin, four phases of basin evolution are identified in the Neoproterozoic Yangtze Craton: a) the early Qingbaikou period(ca. 1 000-820 Ma), with back-arc spreading basins on the western and northern Yangtze margins and the interior, and a retro-arc foreland basin on the southeastern Yangtze margin; b) the late Qingbaikou period (ca.820-720 Ma), with back-arc spreading basins on the western and northern Yangtze margins and extensional down-faulted basins on the southeastern Yangtze margin and the interior of the carton; c) the Nanhua period (ca.720-635 Ma), with rift basins on the southeastern, western, and northern Yangtze margins and the interior; and d) the Sinian period (ca. 635-541 Ma), with intracratonic rift basins in the interior of Yangtze Craton (i.e. the central Sichuan, the Wanyuan-Dazhou and the west Hubei-east Chongqing area) and divergent marginal subsidence basins on the southeastern and northern Yangtze margins. The Nanhua rift basins and the Sinian divergent marginal subsidence and intracratonic rift basins were most conducive to source rock formation. The southern Shaanxi, northeastern Sichuan, western Hubei, central Sichuan and the adjacent area of Hunan, Guizhou and Chongqing are the most favorable areas of the Neoproterozoic source rocks in the Yangtze Craton. They are also considered to be favorable regions for deep natural gas exploration on the Yangtze Craton.
-
Key words:
- TSM /
- Basin prototype /
- Neoproterozoic /
- Yangtze Craton
-
图 5 扬子克拉通新元古代青白口纪早期盆地沉积充填特征
剖面位置见图 4。
Figure 5. Basin sedimentary filling characteristics of Yangtze Craton during early Qingbaikou period, Neoproterozoic
图 6 扬子克拉通新元古代青白口纪晚期盆地沉积充填特征
剖面位置见图 4。
Figure 6. Basin filling characteristics of Yangtze Craton during late Qingbaikou period, Neoproterozoic
图 7 扬子克拉通新元古代南华纪盆地沉积充填特征
剖面位置见图 4。
Figure 7. Basin filling characteristics of Yangtze Craton during Neoproterozoic Nanhua period
图 8 扬子克拉通新元古代震旦纪盆地沉积充填特征
剖面位置见图 4。
Figure 8. Basin filling characteristics of Yangtze Craton during Neoproterozoic Sinian period
表 1 TSM盆地原型分类及其演化序列
Table 1. Classification and evolution sequence of TSM prototype basins
表 2 扬子克拉通新元古代地层序列
Table 2. Neoproterozoic stratigraphy and correlation of Yangtze Craton
表 3 扬子克拉通新元古代盆地原型演化阶段划分
Table 3. Evolutionary sequences of Neoproterozoic prototype basins in Yangtze Craton
-
[1] 朱夏. 试论古全球构造与古生代油气盆地[J]. 石油与天然气地质, 1983, 4(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198301000.htmZHU Xia. Notes on ancient global tectonics and Paleozoic petroliferous basins[J]. Oil & Gas Geology, 1983, 4(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198301000.htm [2] 朱夏. 朱夏论中国含油气盆地构造[M]. 北京: 石油工业出版社, 1986.ZHU Xia. ZHU Xia's discussion on China's petroleum basin[M]. Beijing: Petroleum Industry Press, 1986. [3] 张渝昌. 中国含油气盆地原型分析[M]. 南京: 南京大学出版社, 1997.ZHANG Yuchang. Prototype analysis of oil-bearing basins in China[M]. Nanjing: Nanjing University Press, 1997. [4] 张渝昌. 动态的盆地和石油: 从盆地原型系统组合例解油气的形成和分布[M]. 北京: 石油工业出版社, 2010.ZHANG Yuchang. Dynamical basin and petroleum[M]. Beijing: Petroleum Industry Press, 2010. [5] 徐旭辉, 江兴歌, 朱建辉, 等. TSM盆地模拟: 在苏北溱潼凹陷的应用[M]. 北京: 地质出版社, 1997.XU Xuhui, JIANG Xingge, ZHU Jianhui, et al. TSM basin modeling: a case study of Qintong Depression, northern Jiangsu[M]. Beijing: Geological Publishing House, 1997. [6] 徐旭辉. 塔里木古生代原型盆地分析的油气勘探意义[J]. 石油与天然气地质, 2002, 23(3): 224-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200203004.htmXU Xuhui. The significance of the analysis of Tarim Paleozoic prototype basins in oil and gas exploration[J]. Oil & Gas Geo-logy, 2002, 23(3): 224-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200203004.htm [7] 徐旭辉, 高长林, 江兴歌, 等. 中国含油气盆地动态分析概论[M]. 北京: 石油工业出版社, 2009.XU Xuhui, GAO Changlin, JIANG Xingge, et al. Dynamic analysis of petroliferous basin in China[M]. Beijing: Petroleum Industry Press, 2009. [8] YANG Fengli, SUN Zhuan, ZHOU Zuyi, et al. The evolution of the South China Sea Basin in the Mesozoic-Cenozoic and its significance for oil and gas exploration: a review and overview[C]//GAO Dengliang. Tectonics and sedimentation: implications for petroleum systems: AAPG memoir 100. AAPG, 2012: 397-418. [9] YANG Fengli, ZHOU Xiaofeng, PENG Yunxin, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: an overview[J]. Precambrian Research, 2020, 337: 105563. doi: 10.1016/j.precamres.2019.105563 [10] HOFFMAN P F, SCHRAG D P. The snowball Earth hypothesis: testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155. doi: 10.1046/j.1365-3121.2002.00408.x [11] LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. [12] LI Zhengxiang, EVANS D A D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232. doi: 10.1016/j.sedgeo.2013.05.016 [13] CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40: 1-47. doi: 10.1016/j.marpetgeo.2012.09.011 [14] FROLOV S V, AKHMANOV G G, BAKAY E A, et al. Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins[J]. Precambrian Research, 2015, 259: 95-113. doi: 10.1016/j.precamres.2014.11.018 [15] 陈孝红, 张国涛, 胡亚. 鄂西宜昌地区埃迪卡拉系陡山沱组页岩沉积环境及其页岩气地质意义[J]. 华南地质与矿产, 2016, 32(2): 106-116. doi: 10.3969/j.issn.1007-3701.2016.02.002CHEN Xiaohong, ZHANG Guotao, HU Ya. Deposit environment of the Ediacaran Doushantuo Formation in Yichang area, western Hubei Province, China and its geological significance for shale gas[J]. Geology and Mineral Resources of South China, 2016, 32(2): 106-116. doi: 10.3969/j.issn.1007-3701.2016.02.002 [16] 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htmDU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm [17] ZHOU Meifu, YAN Danping, KENNEDY A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67. [18] ZHENG Yongfei, WU Rongxin, WU Yuanbao, et al. Rift melting of juvenile arc-derived crust: geochemical evidence from Neopro-terozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383. [19] ZHAO Guochun, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017 [20] 汪正江, 王剑, 江新胜, 等. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评, 2015, 61(1): 1-22. doi: 10.16509/j.georeview.2015.01.021WANG Zhengjiang, WANG Jian, JIANG Xinsheng, et al. New progress for the stratigraphic division and correlation of Neopro-terozoic in Yangtze Block, South China[J]. Geological Review, 2015, 61(1): 1-22. doi: 10.16509/j.georeview.2015.01.021 [21] 旷红伟, 柳永清, 耿元生, 等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报, 2019, 21(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201901002.htmKUANG Hongwei, LIU Yongqing, GENG Yuansheng, et al. Important sedimentary geological events of the Meso-Neoproterozoic and their significance[J]. Journal of Palaeogeography, 2019, 21(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201901002.htm [22] EVANS D A D, LI Z X, KIRSCHVINK J L, et al. A high-quality Mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1/3): 313-334. [23] ZHAO Guochun, WANG Yuejun, HUANG Baochun, et al, Geolo-gical reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003 [24] DONG Yunpeng, LIU Xiaoming, SANTOSH M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189(1/2): 66-90. [25] XIA Yan, XU Xisheng, NIU Yaoling, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309: 56-87. doi: 10.1016/j.precamres.2017.02.020 [26] ZHAO Junhong, LI Qiwei, LIU Hang, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 2018, 187: 1-18. doi: 10.1016/j.earscirev.2018.10.004 [27] LI Xianhua, MCCULLOCH M T. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in Southeast China[J]. Precambrian Research, 1996, 76(1/2): 67-76. [28] YAO Jinlong, CAWOOD P A, SHU Liangshu, et al. Jiangnan Orogen, South China: a~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872. doi: 10.1016/j.earscirev.2019.05.016 [29] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htmSHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm [30] YAO Jinlong, SHU Liangshu, SANTOSH M, et al. Precambrian crustal evolution of the South China Block and its relation to supercontinent history: constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite[J]. Precambrian Research, 2012, 208-211: 19-48. doi: 10.1016/j.precamres.2012.03.009 [31] YE Meifang, LI Xianhua, LI Wuxian, et al. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 2007, 12(1/2): 144-156. [32] SUN Junjun, SHU Liangshu, SANTOSH M, et al. Precambrian crustal evolution of the central Jiangnan Orogen (South China): evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks[J]. Precambrian Research, 2018, 318: 1-24. doi: 10.1016/j.precamres.2018.09.008 [33] XIN Yujia, LI Jianhua, DONG Shuwen, et al. Neoproterozoic post-collisional extension of the central Jiangnan orogen: geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks[J]. Precambrian Research, 2017, 294: 91-110. doi: 10.1016/j.precamres.2017.03.018 [34] ZHAO Junhong, ZHOU Meifu. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: partial melting of a thickened lower crust and implications for secular crustal evolution[J]. Lithos, 2008, 104(1/4): 231-248. [35] ZHOU Meifu, YAN Danping, WANG Changliang, et al. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 286-300. [36] WANG Ruirui, XU Zhiqin, SANTOSH M, et al. Middle Neopro-terozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes[J]. Journal of Geodynamics, 2017, 109: 59-74. doi: 10.1016/j.jog.2017.07.003 [37] LING Wenli, GAO Shan, ZHANG Benren, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122(1/4): 111-140. [38] LI Jianhua, DONG Shuwen, CAWOOD P A, et al. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 2018, 490: 170-179. [39] 谷志东, 汪泽成. 四川盆地川中地块新元古代伸展构造的发现及其在天然气勘探中的意义[J]. 中国科学(地球科学), 2014, 44(10): 2210-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410010.htmGU Zhidong, WANG Zecheng. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, Sichuan Basin, South China[J]. Science China (Earth Sciences), 2014, 57(11): 2758-2768. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410010.htm [40] 钟勇, 李亚林, 张晓斌, 等. 四川盆地下组合张性构造特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 498-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305002.htmZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Features of extensional structures in pre-Sinian to Cambrian strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 498-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305002.htm [41] 张纯臣. 湖南省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1-292.ZHANG Chunchen. Stratigraphy (lithostratic) of Hunan Pro-vince[M]. Wuhan: China University of Geosciences Press, 1997: 1-292. [42] 董卫平. 贵州省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1-306.DONG Weiping. Stratigraphy (lithostratic) of Guizhou Province[M]. Wuhan: China University of Geosciences Press, 1997: 1-306. [43] 刘亚光. 江西省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1-373.LIU Yaguang. Stratigraphy (lithostratic) of Jiangxi Province[M]. Wuhan: China University of Geosciences Press, 1997: 1-373. [44] 马润华. 陕西省岩石地层[M]. 武汉: 中国地质大学出版社, 1998: 1-192.MA Runhua. Stratigraphy (lithostratic) of Shaanxi Province[M]. Wuhan: China University of Geosciences Press, 1998: 1-192. [45] 王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htmWANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83(11): 1527-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm [46] 陈建书, 戴传固, 彭成龙, 等. 湘黔桂相邻区新元古代820~635Ma时期裂谷盆地充填序列与地层格架[J]. 中国地质, 2016, 43(3): 899-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603015.htmCHEN Jianshu, DAI Chuangu, PENG Chenglong, et al. The filling sequence and stratigraphic framework of rift basin during the Neoproterozoic 820-635 Ma in Hunan, Guizhou and Guangxi[J]. Geo-logy in China, 2016, 43(3): 899-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603015.htm [47] WANG Jian, LI Zhengxiang. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/4): 141-158. [48] 卓皆文, 江新胜, 王剑, 等. 华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式[J]. 中国科学(地球科学), 2013, 43(12): 1952-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201312006.htmZHUO Jiewen, JIANG Xinsheng, WANG Jian, et al. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin, western Yangtze Continent, South China[J]. Science China (Earth Sciences), 2013, 56(10): 1664-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201312006.htm [49] 高维, 张传恒. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J]. 地质通报, 2009, 28(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901007.htmGAO Wei, ZHANG Chuanheng. Zircon SHRIMP U-Pb ages of the Huangling granite and the tuff beds from Liantuo Formation in the Three Gorges area of Yangtze River, China and its geolo-gical significance[J]. Geological Bulletin of China, 2009, 28(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901007.htm [50] 杜远生, 周琦, 余文超, 等. 贵州南华纪-震旦纪沉积大地构造及其对沉积矿产的控制作用[J]. 贵州地质, 2018, 35(4): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201804004.htmDU Yuansheng, ZHOU Qi, YU Wenchao, et al. Sedimentary geotectonics and its control function of sedimentary mineral in Nanhua period-Sinian period in Guizhou[J]. Guizhou Geology, 2018, 35(4): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201804004.htm [51] 魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪-早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htmWEI Guoqi, YANG Wei, DU Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm [52] 杨瑞青, 杨风丽, 周晓峰, 等. 汉南-川东北灯影组古地理演化: 晚震旦世扬子西北缘拉张背景的沉积学证据[J]. 沉积学报, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htmYANG Ruiqing, YANG Fengli, ZHOU Xiaofeng, et al. Paleogeographic evolution of the Dengying Formation in Hannan-northeastern Sichuan Basin: sedimentary evidence of the extensional tectonic setting for the northwest margin of the Yangtze block in the Late Sinian[J]. Acta Sedimentologica Sinica, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm [53] GHORI K A R, CRAIG J, THUSU B, et al. Global infracambrian petroleum systems: a review[J]. Geological Society London Special Publications, 2009, 326(1): 109-136. [54] 周晓峰. 扬子克拉通新元古代盆地原型与震旦纪沉积岩相古地理演化[D]. 上海: 同济大学, 2020.ZHOU Xiaofeng. Evolution of the Neoproterozoic prototype basins and the Sinian sedimentary lithofacies palaeogeography in the Yangtze Craton[D]. Shanghai: Tongji University, 2020.