Research progress and challenges of thermal history reconstruction in sedimentary basins
-
摘要: 系统介绍了沉积盆地热历史研究方法的现状和进展。沉积盆地热史重建方法主要包括古温标方法和地球动力学方法两大类,前者主要是从盆地的尺度来进行研究,后者则是从岩石圈的尺度来研究盆地的热历史。古温标方法主要包括了有机质成熟度指标和低温热年代学参数,由于可以通过实测数据来检验模拟结果,因而被认为是研究精度较高且切实可行的方法;实际工作中,一般采用多种古温标耦合反演热历史以提高模拟结果的精度和可靠性。针对多期构造演化盆地,可以结合多种古温标耦合反演和地球动力学正演方法进行相互补充和验证,从而实现定量恢复古老盆地复杂热历史。同时,盆地热史在研究构造抬升作用下的页岩气保存、盆山构造—热演化耦合作用等方面提供了重要的方法技术。目前,针对深层—超深层、海相层系和古老层系的热史重建仍存在诸多问题和挑战。Abstract: The current status and development of the methods of thermal history reconstruction in sedimentary basins are introduced systematically in this paper. The reconstruction methods of thermal history of sedimentary basins mainly include thermal indicators and geodynamic methods. The former mainly considers thermal history at the basin scale; however, the latter uses thermal history of the basin on the scale of the lithosphere. Thermal indicators mainly include the maturity index of organic matter and low temperature thermochronology parameters. The thermal indicator method is considered to be feasible with high precision, because the simulation results can be verified by measured data. In actual work, a variety of thermal indicators are generally used to couple the inversion of thermal history to improve the accuracy and reliability of the simulation results. For basins with various tectonic evolution stages, the thermal indicator method and the geodynamic method can complement and verify each other, thereby realizing quantitative restoration of the complex thermal history of ancient basins. At the same time, the thermal history of basins provides an important method and technology for the study of shale gas preservation during tectonic uplift and basin-mountain tectono-thermal evolution coupling. At present, there are still many problems and challenges in the reconstruction of thermal history of deep and ultra-deep strata, marine strata and ancient strata.
-
图 2 塔里木盆地志留系典型样品(KQ1井, 2 593.8 m, S1t)热史路径模拟结果[46]
利用蒙特卡洛随机反演方法模拟了1 000条热史路径,其中60条是可接受的路径(细线),10条是好的路径(较粗的线),最粗的线代表了最佳温度路径。
a.锆石He扩散剖面, GOF代表拟合度;b.模拟的磷灰石裂变径迹长度分布;c.测试AFT年龄;d.实测AFT长度Figure 2. Thermal history path simulation results of typical samples of the Silurian in Tarim Basin (well KQ1, 2 593.8 m, S1t)
图 3 莺歌海盆地基底热流新生代随时间的演化[92]
Figure 3. Evolution of basement heat flow in Yinggehai Basin during the Cenozoic
-
[1] 汪集暘. 李四光教授倡导的中国地热研究[J]. 第四纪研究, 1989(3): 279-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ198903011.htmWANG Jiyang. Geothermal studies in China: promoted by professor LI Siguang (J.S. LEE)[J]. Quaternary Sciences, 1989(3): 279-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ198903011.htm [2] WAPLES D W. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin, 1980, 64(6): 916-926. [3] LERCHE I, YARZAB R F, KENDALL C G S C. Determination of paleoheat flux from vitrinite reflectance data[J]. AAPG Bulletin, 1984, 68(11): 1704-1717. [4] LERCHE I. Inversion of multiple thermal indicators: quantitative methods of determining paleoheat flux and geological parameters. 1. Theoretical development for paleoheat flux[J]. Mathematical Geo-logy, 1988, 20(1): 1-36. [5] TISSOT B P, PELET R, UNGERER P H. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin, 1987, 71(12): 1445-1466. [6] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer-Verlag, 1984: 180-180. [7] SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. [8] PETERS K E, BURNHAM A K, WALTERS C C, et al. Guidelines for kinetic input to petroleum system models from open-system pyrolysis[J]. Marine and Petroleum Geology, 2018, 92: 979-986. doi: 10.1016/j.marpetgeo.2017.11.024 [9] NIELSEN S B, CLAUSEN O R, MCGREGOR E. Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data[J]. Basin Research, 2017, 29(S1): 515-536. [10] JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. doi: 10.1016/0166-5162(89)90113-4 [11] 丰国秀, 陈盛吉. 岩石中沥青反射率与镜质体反射率之间的关系[J]. 天然气工业, 1988(8): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198803006.htmFENG Guoxiu, CHEN Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988(8): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198803006.htm [12] 刘德汉, 史继扬. 高演化碳酸盐烃源岩非常规评价方法探讨[J]. 石油勘探与开发, 1994, 21(3): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.019.htmLIU Dehan, SHI Jiyang. Discussion on unconventional evaluation method of high evolution carbonate source rock[J]. Petroleum Exploration and Development, 1994, 21(3): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.019.htm [13] BERTRAND R. Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada[J]. Energy Sources, 1993, 15(2): 269-287. doi: 10.1080/00908319308909027 [14] BERTRAND R, MALO M. Dispersed organic matter reflectance and thermal maturation in four hydrocarbon exploration wells in the Hudson Bay Basin: regional implications[R]. Ottawa, Ontario: Geological Survey of Canada, 2012: 52. [15] BUCHARDT B J, LEWAN M D. Reflectance of vitrinite-like mace-rals as a thermal maturity index for Cambrian-Ordovician Alum shale, southern Scandinavia[J]. AAPG Bulletin, 1990, 74(4): 394-406. [16] 程顶胜, 郝石生, 王飞宇. 高过成熟烃源岩成熟度指标: 镜状体反射率[J]. 石油勘探与开发, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htmCHENG Dingsheng, HAO Shisheng, WANG Feiyu. Reflectance of vitrinite-like maceral. s, a possible thermal maturity index for highly/over-matured source rocks of the Lower Paleozoic[J]. Petroleum Exploration and Development, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm [17] 刘祖发, 肖贤明, 傅家谟, 等. 海相镜质体反射率用作早古生代烃源岩成熟度指标研究[J]. 地球化学, 1999, 28(6): 580-588. doi: 10.19700/j.0379-1726.1999.06.008LIU Zufa, XIAO Xianming, FU Jiamo, et al. Marine vitrinite reflectance as a maturity indicator of Lower Palaeozoic hydrocarbon source rocks[J]. Geochimica, 1999, 28(6): 580-588. doi: 10.19700/j.0379-1726.1999.06.008 [18] 王飞宇, 何萍, 程顶胜, 等. 镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺[J]. 天然气工业, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htmWANG Feiyu, HE Ping, CHENG Dingsheng, et al. Vitrinite like reflectance as the maturity indicator for Lower Paleozoic high-over matured source rocks[J]. Natural Gas Industry, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm [19] XIAO Xianming, WILKINS R W T, LIU Dehan, et al. Investigation of thermal maturity of Lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance: a Tarim Basin case study[J]. Organic Geochemistry, 2000, 31(10): 1041-1052. doi: 10.1016/S0146-6380(00)00061-9 [20] SCHMIDT J S, ARAUJO C V, SOUZA I V A F, et al. Hydrous pyrolysis maturation of vitrinite-like and humic vitrinite macerals: implications for thermal maturity analysis[J]. International Journal of Coal Geology, 2015, 144-145: 5-14. doi: 10.1016/j.coal.2015.03.016 [21] 王晔, 邱楠生, 马中良, 等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报, 2020, 49(3): 563-575. doi: 10.13247/j.cnki.jcumt.001114WANG Ye, QIU Nansheng, MA Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575. doi: 10.13247/j.cnki.jcumt.001114 [22] GOODARZI F, NORFORD B S. Graptolites as indicators of the temperature histories of rocks[J]. Journal of the Geological Society of London, 1985, 142(6): 1089-1099. doi: 10.1144/gsjgs.142.6.1089 [23] COLE G A. Graptolite-chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba shale, Saudi Arabia[J]. Energy & Fuels, 1994, 8(6): 1443-1459. [24] 曹长群, 尚庆华, 方一亭. 探讨笔石反射率对奥陶系、志留系烃源岩成熟度的指示作用[J]. 古生物学报, 2000, 39(1): 151-156. doi: 10.3969/j.issn.0001-6616.2000.01.013CAO Changqun, SHANG Qinghua, FANG Yiting. The study of graptolite reflectance as the indicator of source-rock maturation in Ordovician and Silurian of Tarim Basin, Ordos, Jiangsu areas[J]. Acta Palaeontologica Sinica, 2000, 39(1): 151-156. doi: 10.3969/j.issn.0001-6616.2000.01.013 [25] PETERSEN H I, SCHOVSBO N H, NIELSEN A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. doi: 10.1016/j.coal.2013.03.013 [26] WANG Ye, QIU Nansheng, BORJIGIN Tenger, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465. doi: 10.1016/j.marpetgeo.2018.10.025 [27] LUO Qingyong, FARIBORZ G, ZHONG Ningning, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: an overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. doi: 10.1016/j.earscirev.2019.103000 [28] LANDIS C R, CASTAÑO J R. Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22(1): 137-149. doi: 10.1016/0146-6380(95)90013-6 [29] SCHOENHERR J, Littke R, Urai J L, et al. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry, 2007, 38(8): 1293-1318. doi: 10.1016/j.orggeochem.2007.03.010 [30] RIEDIGER C L. Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: an example from the "Nordegg Member", Western Canada Sedimentary Basin[J]. International Journal of Coal Geology, 1993, 22(3/4): 295-315. [31] BERTRAND R, MALO M. Source rock analysis, thermal maturation and hydrocarbon generation in Siluro-Devonian rocks of the Gaspé Belt Basin, Canada[J]. Bulletin of Canadian Petroleum Geology, 2001, 49(2): 238-261. doi: 10.2113/49.2.238 [32] GREEN P F, DUDDY I R, GLEADOW A J W, et al. Thermal annealing of fission tracks in apatite: 1. a qualitative description[J]. Chemical Geology, 1986, 59: 237-253. doi: 10.1016/0168-9622(86)90074-6 [33] WAGNER M, ALTHERR R, VAN DEN HAUTE P. Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study[J]. Tectonophysics, 1992, 204(1/2): 93-110. [34] TAGAMI T, CARTER A, HURFORD A J. Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature[J]. Chemical Geology, 1996, 130(1/2): 147-157. [35] YAMADA R, MURAKAMI M, TAGAMI T. Statistical modelling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments[J]. Chemical Geology, 2007, 236(1/2): 75-91. [36] COYLE D A, WAGNER G A. Positioning the titanite fission-track partial annealing zone[J]. Chemical Geology, 1998, 149(1/2): 117-125. [37] LASLETT G M, GREEN P F, DUDDY I R, et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical Geology, 1987, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1 [38] GREEN P F, DUDDY I R, LASLETT G M, et al. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology, 1989, 79(2): 155-182. [39] DONELICK R A, KETCHAM R A, CARLSON W D. Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects[J]. American Mineralogist, 1999, 84(9): 1224-1234. doi: 10.2138/am-1999-0902 [40] KETCHAM R A, DONELICK R A, CARLSON W D. Variability of apatite fission-track annealing kinetics III: extrapolation to geological time scales[J]. American Mineralogist, 1999, 84(9): 1235-1255. doi: 10.2138/am-1999-0903 [41] YAMADA R, TAGAMI T, NISHIMURA S, et al. Annealing kinetics of fission tracks in zircon: an experimental study[J]. Chemical Geology, 1995, 122(1/4): 249-258. [42] QIU Nansheng, CAI Chang'e. Detrital zircon (U-Th)/He and fission track data of natural deep borehole samples and its geological significance[C]//15th International Conference on Thermochronology. Maresias, Brazil: [s. l. ], 2016: 133-133. [43] MORA A, CASALLAS W, KETCHAM R A, et al. Kinematic restoration of contractional basement structures using thermokinematic models: a key tool for petroleum system modeling[J]. AAPG Bulletin, 2015, 99(8): 1575-1598. doi: 10.1306/04281411108 [44] ALMENDRAL A, ROBLES W, PARRA M, et al. FetKin: coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages[J]. AAPG Bulletin, 2015, 99(8): 1557-1573. doi: 10.1306/07071411112 [45] WOLF R A, FARLEY K A, SILVER L T. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5 [46] QIU Nansheng, CHANG Jian, ZUO Yinhui, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, Northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821. doi: 10.1306/09071111029 [47] REINERS P W, FARLEY K A, HICKES H J. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics, 2002, 349(1/4): 297-308. [48] REINERS P W, BRADY R, FARLEY K A, et al. Helium and argon thermochronometry of the Gold Butte block, south Virgin Mountains, Nevada[J]. Earth and Planetary Science Letters, 2000, 178(3/4): 315-326. [49] FLOWERS R M, KETCHAM R A, SHUSTER D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2347-2365. doi: 10.1016/j.gca.2009.01.015 [50] BROWN R W, BEUCHER R, ROPER S, et al. Natural age dispersion arising from the analysis of broken crystals. Part I: theoretical basis and implications for the apatite (U-Th)/He thermochronometer[J]. Geochimica et Cosmochimica Acta, 2013, 122: 478-497. doi: 10.1016/j.gca.2013.05.041 [51] BEUCHER R, BROWN R W, ROPER S, et al. Natural age dispersion arising from the analysis of broken crystals: Part II: practical application to apatite (U-Th)/He thermochronometry[J]. Geochimica et Cosmochimica Acta, 2013, 120: 395-416. doi: 10.1016/j.gca.2013.05.042 [52] JEHLIČKA J, BÉNY C. Application of Raman microspectro-metry in the study of structural changes in Precambrian kerogens during regional metamorphism[J]. Organic Geochemistry, 1992, 18(2): 211-213. doi: 10.1016/0146-6380(92)90132-H [53] PóCSIK I, HUNDHAUSEN M, KOóS M, et al. Origin of the D peak in the Raman spectrum of microcrystalline graphite[J]. Journal of Non-Crystalline Solids, 1998, 227-230: 1083-1086. doi: 10.1016/S0022-3093(98)00349-4 [54] ZENG Yishan, WU Chaodong. Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures[J]. Fuel, 2007, 86(7/8): 1192-1200. [55] LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(11): 1285-1298. doi: 10.1007/s11434-012-5535-y [56] ZHOU Qin, XIAO Xianming, PAN Lei, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25. doi: 10.1016/j.coal.2013.10.013 [57] LIS G P, MASTALERZ M, SCHIMMELMANN A, et al. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Ro in type-Ⅱ kerogens from Devonian black shales[J]. Organic Geochemistry, 2005, 36(11): 1533-1552. doi: 10.1016/j.orggeochem.2005.07.001 [58] 王兆云, 范璞, 程克明. 碳酸盐岩热演化指标研究[J]. 中国科学(B辑), 1995, 25(5): 556-560. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199505016.htmWANG Zhaoyun, FAN Pu, CHENG Keming. Study on thermal evolution indicator for carbonate strata[J]. Science in China (B), 1995, 25(5): 556-560. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199505016.htm [59] WEI Zhibin, GAO Xiuxiang, ZHANG Dajiang. Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy[J]. Energy & Fuels, 2005, 19(1): 240-250. [60] 周希云. 上扬子区二叠系至下三叠统牙形石颜色变化指标及其油气评价[J]. 海相沉积区油气地质, 1987, 1(2): 83-90.ZHOU Xiyun. CAI of conodonts from Permian to Lower Triassic in Upper Yangzi area and its oil and gas evaluation[J]. Petroleum Geology in Marine Sedimentary Area, 1987, 1(2): 83-90. [61] PUSEY W C. Paleotemperatures in the Gulf Coast using the ESR-kerogen method[J]. Gulf Coast Association of Geological Societies, 1973, 23: 195-202. [62] BAKR M Y, AKIYAMA M, SANADA Y, et al. Radical concentration of kerogen as a maturation parameter[J]. Organic Geochemistry, 1988, 12(1): 29-32. doi: 10.1016/0146-6380(88)90112-X [63] QIU Nansheng, WANG Jiyang, ZHOU Licheng, et al. Thermal evolution of source rocks in sedimentary basin by using electron paramagnetic resonance techniques[J]. Chinese Science Bulletin, 1995, 40(19): 1625-1628. [64] QIU Nansheng, LI Huili, JIN Zhijun, et al. Temperature and time effect on the concentrations of free radicals in coal: evidence from laboratory pyrolysis experiments[J]. International Journal of Coal Geology, 2007, 69(3): 220-228. doi: 10.1016/j.coal.2006.04.002 [65] QIU Nansheng, WANG Jiyang. The use of free radicals of organic matter to determine paleogeothermal gradient[J]. Organic Geochemistry, 1998, 28(1/2): 77-86. [66] 席道瑛, 程经毅, 黄建华. 声发射在研究岩石古温度中的应用[J]. 中国科学技术大学学报, 1996, 26(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD601.017.htmXI Daoying, CHENG Jingyi, HUANG Jianhua. The application of acoustic emission in the study of ancient temperature of rock[J]. Journal of China University of Science and Technology, 1996, 26(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD601.017.htm [67] YAVUZ H, DEMIRDAG S, CARAN S. Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103. doi: 10.1016/j.ijrmms.2009.09.014 [68] 李佳蔚, 邱楠生, 梅庆华, 等. 利用热声发射技术测量岩石最高古温度的探索[J]. 地球物理学报, 2011, 54(11): 2898-2905. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111021.htmLI Jiawei, QIU Nansheng, MEI Qinghua, et al. Study on measuring the highest rock paleotemperature with thermo-acoustic emission[J]. Chinese Journal of Geophysics, 2011, 54(11): 2898-2905. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111021.htm [69] 张建坤, 何生, 易积正, 等. 岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史[J]. 石油学报, 2014, 35(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401006.htmZHANG Jiankun, HE Sheng, YI Jizheng, et al. Rock thermo-acoustic emission and basin modeling technologies applied to the study of maximum paleotemperatures and thermal maturity histories of Lower Paleozoic marine shales in the western Middle Yangtze area[J]. Acta Petrolei Sinica, 2014, 35(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401006.htm [70] EILER J M. "Clumped-isotope"geochemistry: the study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327. [71] EILER J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30(25/26): 3575-3588. [72] PASSEY B H, HENKES G A. Carbonate clumped isotope bond reordering and geospeedometry[J]. Earth and Planetary Science Letters, 2012, 351-352: 223-236. doi: 10.1016/j.epsl.2012.07.021 [73] HENKES G A, PASSEY B H, GROSSMAN E L, et al. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures[J]. Geochimica et cosmochimica acta, 2014, 139: 362-382. doi: 10.1016/j.gca.2014.04.040 [74] STOLPER D A, EILER J M. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples[J]. American Journal of Science, 2015, 315(5): 363-411. doi: 10.2475/05.2015.01 [75] SHENTON B J, GROSSMAN E L, PASSEY B H, et al. Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and recrystallization[J]. GSA Bulletin, 2015, 127(7/8): 1036-1051. [76] GALLAGHER T M, SHELDON N D, MAUK J L, et al. Constraining the thermal history of the North American midcontinent rift system using carbonate clumped isotopes and organic thermal maturity indices[J]. Precambrian Research, 2017, 294: 53-66. doi: 10.1016/j.precamres.2017.03.022X(78)90071-7 [77] MANGENOT X, DEçONINCK J F, BONIFACIE M, et al. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes-France): evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data[J]. Basin Research, 2019, 31(2): 361-379. doi: 10.1111/bre.12324 [78] MCKENZIE D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7 [79] ROYDEN L, KEEN C E. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves[J]. Earth and Planetary Science Letters, 1980, 51(2): 343-361. doi: 10.1016/0012-821X(80)90216-2 [80] HELLINGER S J, SCLATER J G. Some comments on two-layer extensional models for the evolution of sedimentary basins[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B10): 8251-8269. doi: 10.1029/JB088iB10p08251 [81] KUSZNIR N J, ZIEGLER P A. The mechanics of continental extension and sedimentary basin formation: a simple-shear/pure-shear flexural cantilever model[J]. Tectonophysics, 1992, 215(1/2): 117-131. [82] DEHLER S A, KEEN C E, ROHR K M M. Tectonic and thermal evolution of Queen Charlotte Basin: lithospheric deformation and subsidence models[J]. Basin Research, 2003, 9(3): 243-261. [83] KUSZNIR N J, KARNER G D. Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins[J]. Geological Society, London, Special Publications, 2007, 282(1): 389-419. doi: 10.1144/SP282.16 [84] BAUR F, LITTKE R, WIELENS H, et al. Basin modeling meets rift analysis: a numerical modeling study from the Jeanne d'Arc Basin, offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2010, 27(3): 585-599. doi: 10.1016/j.marpetgeo.2009.06.003 [85] JARVIS G T, MCKENZIE D P. Sedimentary basin formation with finite extension rates[J]. Earth and Planetary Science Letters, 1980, 48(1): 42-52. doi: 10.1016/0012-821X(80)90168-5 [86] 何丽娟. 辽河盆地新生代多期构造热演化模拟[J]. 地球物理学报, 1999, 42(1): 62-68. doi: 10.3321/j.issn:0001-5733.1999.01.007HE Jijuan. Mutiple tectono-thermal modeling of Liaohe Basin in the Cenozoic[J]. Chinese Journal of Geophysics, 1999, 42(1): 62-68. doi: 10.3321/j.issn:0001-5733.1999.01.007 [87] WHITE N. An inverse method for determining lithospheric strain rate variation on geological timescales[J]. Earth and Planetary Science Letters, 1994, 122(3/4): 351-371. [88] WHITE N, BELLINGHAM P. A two-dimensional inverse model for extensional sedimentary basins 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ETG 17-1-ETG 17-20. doi: 10.1029/2001JB000173 [89] SONG Haibin, CHEN Lin, ZHANG Jiong, et al. A Matlab program for 1D strain rate inversion[J]. Computers & Geosciences, 2010, 36(1): 16-23. [90] CHEN Lin, ZHANG Zhongjie, SONG Haibin, et al. Numerical modeling of extensional sedimentary basin formation with Matlab: application to the northern margin of the South China Sea[J]. Computers & Geosciences, 2013, 51: 153-165. [91] HE Lijuan, WANG Kelin, XIONG Liangping, et al. Heat flow and thermal history of the South China Sea[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 211-220. [92] HE Lijuan, XIONG Liangping, WANG Jiyang. Heat flow and thermal modeling of the Yinggehai Basin, South China Sea[J]. Tectonophysics, 2002, 351(3): 245-253. doi: 10.1016/S0040-1951(02)00160-9 [93] HE Lijuan, WANG Jiyang. Tectono-thermal modelling of sedimentary basins with episodic extension and inversion, a case history of the Jiyang Basin, North China[J]. Basin Research, 2004, 16(4): 587-599. doi: 10.1111/j.1365-2117.2004.00245.x [94] CHEN Lin. Stretching factor estimation for the long-duration and multi-stage continental extensional tectonics: application to the Baiyun Sag in the northern margin of the South China Sea[J]. Tectonophysics, 2014, 611: 167-180. doi: 10.1016/j.tecto.2013.11.026 [95] LIU Qiongying, HE Lijuan, HUANG Fang, et al. Cenozoic lithospheric evolution of the Bohai Bay Basin, eastern North China Craton: constraint from tectono-thermal modeling[J]. Journal of Asian Earth Sciences, 2016, 115: 368-382. doi: 10.1016/j.jseaes.2015.10.013 [96] LIU Qiongying, HE Lijuan, CHEN Lichun. Tectono-thermal mode-ling of Cenozoic multiple rift episodes in the Bohai Bay Basin, eastern China and its geodynamic implications[J]. International Journal of Earth Sciences, 2018, 107(1): 53-69. doi: 10.1007/s00531-017-1550-1 [97] POLYANSKY O P. Dynamic causes for the opening of the Baikal Rift Zone: a numerical modelling approach[J]. Tectonophysics, 2002, 351(1/2): 91-117. [98] VAN AVENDONK H J A, LAVIER L L, SHILLINGTON D J, et al. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland[J]. Tectonophysics, 2009, 468(1/4): 131-148. [99] HUISMANS R S, BEAUMONT C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins[J]. Nature, 2011, 473(7345): 74-78. doi: 10.1038/nature09988 [100] 何丽娟, 汪集旸. 沉积盆地构造热演化研究进展: 回顾与展望[J]. 地球物理学进展, 2007, 22(4): 1215-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004035.htmHE Lijuan, WANG Jiyang. Tectono-thermal modeling of sedimentary basins: review and outlook[J]. Progress in Geophysics, 2007, 22(4): 1215-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004035.htm [101] DEMETRESCU C, WILHELM H, ENE M, et al. On the geothermal regime of the foreland of the eastern Carpathians bend[J]. Journal of Geodynamics, 2005, 39(1): 29-59. doi: 10.1016/j.jog.2004.08.003 [102] VOORDE M T, GASPAR-ESCRIBANO J M, JUEZ-LARRé J, et al. Thermal effects of linked lithospheric and upper crustal-scale processes: insights from numerical modeling of the Cenozoic Central Catalan Coastal Ranges (NE Spain)[J]. Tectonics, 2007, 26(5): TC5018. [103] HE Lijuan. Permian to Late Triassic evolution of the Longmen Shan Foreland Basin (Western Sichuan): model results from both the lithospheric extension and flexure[J]. Journal of Asian Earth Sciences, 2014, 93: 49-59. doi: 10.1016/j.jseaes.2014.07.007 [104] 何丽娟, 许鹤华, 刘琼颖. 前陆盆地构造-热演化: 以龙门山前陆盆地为例[J]. 地学前缘, 2017, 24(3): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703015.htmHE Lijuan, XU Hehua, LIU Qiongying. Tectono-thermal modeling of the foreland basins: a case study of the Longmenshan Foreland Basin[J]. Earth Science Frontiers, 2017, 24(3): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703015.htm [105] 何丽娟, 黄方, 刘琼颖, 等. 四川盆地早古生代构造热演化特征[J]. 地球科学与环境学报, 2014, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004HE Lijuan, HUANG Fang, LIU Qiongying, et al. Tectono-thermal evolutionof Sichuan Basin in Early Paleozoic[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004 [106] 徐秋晨, 邱楠生, 刘雯, 等. 利用团簇同位素恢复沉积盆地热历史的探索[J]. 科学通报, 2019, 64(5/6): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htmXU Qiuchen, QIU Nansheng, LIU Wen, et al. Reconstructing the basin thermal history with clumped isotope[J]. Chinese Science Bulletin, 2019, 64(5/6): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htm [107] 刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用: 以塔里木盆地顺托果勒地区为例[J]. 地球物理学报, 2020, 63(2): 597-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002021.htmLIU Yuchen, QIU Nansheng, CHANG Jian, et al. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: a case study of Shuntuoguole area in Tarim Basin[J]. Chinese Journal of Geophysics, 2020, 63(2): 597-611 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002021.htm [108] 俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438YU Lingjie, FAN Ming, TENGER, et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438 [109] CHANG Jian, QIU Nansheng, LI Jiawei. Tectono-thermal evolution of the northwestern edge of the Tarim Basin in China: constraints from apatite (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2012, 61: 187-198. doi: 10.1016/j.jseaes.2012.09.020 [110] FILLON C, GAUTHERON C, VAN DER BEEK P. Oligocene-Miocene burial and exhumation of the southern Pyrenean foreland quantified by low-temperature thermochronology[J]. Journal of the Geological Society, 2013, 170(1): 67-77. doi: 10.1144/jgs2012-051 [111] GUENTHNER W R, REINERS P W, TIAN Yuntao. Interpreting date-eU correlations in zircon (U-Th)/He datasets: a case study from the Longmen Shan, China[J]. Earth and Planetary Science Letters, 2014, 403: 328-339. doi: 10.1016/j.epsl.2014.06.050 [112] RAK A J, MCQUARRIE N, EHLERS T A. Kinematics, exhumation, and sedimentation of the North Central Andes (Bolivia): an integrated thermochronometer and thermokinematic modeling approach[J]. Tectonics, 2017, 36(11): 2524-2554. doi: 10.1002/2016TC004440 [113] ALDEGA L, BIGI S, CARMINATI E, et al. The Zagros fold-and-thrust belt in the Fars province (Iran): II. Thermal evolution[J]. Marine and Petroleum Geology, 2018, 93: 376-390. doi: 10.1016/j.marpetgeo.2018.03.022 [114] BALESTRA M, CORRADO S, ALDEGA L, et al. Thermal and structural modeling of the Scillato wedge-top basin source-to-sink system: insights into the Sicilian fold-and-thrust belt evolution (Italy)[J]. GSA Bulletin, 2019, 131(11/12): 1763-1782. [115] MCQUARRIE N, EHLERS T A. Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: insights from thermokinematic and erosion modeling of the Bhutan Himalaya[J]. Tectonics, 2015, 34(6): 1055-1079. doi: 10.1002/2014TC003783 [116] CHAPMAN J B, CARRAPA B, BALLATO P, et al. Intracontinental subduction beneath the Pamir Mountains: constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt[J]. GSA Bulletin, 2017, 129(11/12): 1450-1471. [117] QIU Nansheng, CHANG Jian, LI Jiawei, et al. New evidence on the Neogene uplift of South Tianshan: constraints from the (U-Th)/He and AFT ages of borehole samples of the Tarim Basin and implications for hydrocarbon generation[J]. International Journal of Earth Sciences, 2012, 101(6): 1625-1643. doi: 10.1007/s00531-011-0745-0 [118] YU Shun, CHEN Wen, EVANS N J, et al. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J]. Tectonophysics, 2014, 630: 166-182. doi: 10.1016/j.tecto.2014.05.021 [119] FOSDICK J C, CARRAPA B, ORTíZ G. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: reconciling bedrock cooling and detrital records[J]. Earth and Planetary Science Letters, 2015, 432: 73-83. doi: 10.1016/j.epsl.2015.09.041 [120] TIAN Yuntao, QIU Nansheng, KOHN B P, et al. Detrital zircon (U-Th)/He thermochronometry of the Mesozoic Daba Shan Foreland Basin, Central China: evidence for timing of post-orogenic denudation[J]. Tectonophysics, 2012, 570-571: 65-77. doi: 10.1016/j.tecto.2012.08.010 [121] CHANG Jian, TIAN Yuntao, QIU Nansheng. Mid-Late Miocene deformation of the northern Kuqa fold-and-thrust belt (southern Chinese Tian Shan): an apatite (U-Th-Sm)/He study[J]. Tectonophysics, 2017, 694: 101-113. doi: 10.1016/j.tecto.2016.12.003 [122] CHANG Jian, LI Dan, MIN K, et al. Cenozoic deformation of the Kalpin fold-and-thrust belt, southern Chinese Tian Shan: new insights from low-T thermochronology and sandbox modeling[J]. Tectonophysics, 2019, 766: 416-432. doi: 10.1016/j.tecto.2019.06.018 [123] CHANG Jian, QIU Nansheng, LIU Shuai, et al. Post-Triassic multiple exhumation of the Taihang Mountains revealed via low-T thermochronology: implications for the paleo-geomorphologic reconstruction of the North China Craton[J]. Gondwana Research, 2019, 68: 34-49. doi: 10.1016/j.gr.2018.11.007 [124] DUNKL I, DI GIULIO A, KUHLEMANN J. Combination of single-grain fission-track chronology and morphological analysis of detrital zircon crystals in provenance studies: sources of the Macigno Formation (Apennines, Italy)[J]. Journal of Sedimentary Research, 2001, 71(4): 515-524. [125] GARVER J I, KAMP P J J. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand[J]. Tectonophysics, 2002, 349(1/4): 203-219. [126] BERNET M, VAN DER BEEK P, PIK R, et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal[J]. Basin Research, 2006, 18(4): 393-412. doi: 10.1111/j.1365-2117.2006.00303.x [127] CAO Kai, BERNET M, WANG Guocan, et al. Focused Pliocene-Quaternary exhumation of the Eastern Pamir Domes, Western China[J]. Earth and Planetary Science Letters, 2013, 363: 16-26. doi: 10.1016/j.epsl.2012.12.023