留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地外围常压页岩气勘探开发进展与攻关方向

郭彤楼 蒋恕 张培先 曾萍

郭彤楼, 蒋恕, 张培先, 曾萍. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837
引用本文: 郭彤楼, 蒋恕, 张培先, 曾萍. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837
GUO Tonglou, JIANG Shu, ZHANG Peixian, ZENG Ping. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837
Citation: GUO Tonglou, JIANG Shu, ZHANG Peixian, ZENG Ping. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837

四川盆地外围常压页岩气勘探开发进展与攻关方向

doi: 10.11781/sysydz202005837
基金项目: 

国家科技重大专项“彭水地区常压页岩气勘探开发示范工程” 2016ZX05061

中国石化科技项目“南川复杂构造带页岩气勘探开发关键技术研究” P19017-3

详细信息
    作者简介:

    郭彤楼(1965-), 男, 博士, 教授级高级工程师, 从事油气地质勘探与构造地质研究。E-mail: tlguo@163.com

  • 中图分类号: TE132.2

Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin

  • 摘要: 首先简要介绍了美国常压页岩气的基本地质情况和生产特征,以及造成页岩气常压或低压的原因,再以四川盆地外围武隆、彭水、道真等残留向斜上奥陶统五峰组—下志留统龙马溪组页岩气藏的勘探开发为例,通过对比,指出美国常压、低压页岩气藏与四川盆地外围常压页岩气的最大差别有3点:一是美国页岩气藏的厚层富有机质页岩连续分布面积大;二是绝大多数有机质热演化程度不高、吸附气含量高,多采用直井生产;三是页岩沉积后期经历的构造运动期次少、强度低。采用超轻支撑剂的氮气泡沫水平井压裂在美国Big Sandy地区Ohio低压页岩气开发中取得了成功。通过对3个残留向斜勘探开发进展的分析,提出改造期次、强度、埋深、分布面积等是盆外残留向斜保存条件差异的主要因素,也是导致地层压力系数和产量差异的主要原因;基于此,提出了下步盆地外围常压页岩气勘探开发与技术攻关建议。

     

  • 图  1  四川盆地东南缘武陵褶皱带区域地质概况

    Figure  1.  Geological setting of Wuling fold belt, southeastern margin of Sichuan Basin

    图  2  美国Appalachian盆地Big Sandy页岩气产区成熟度(Ro)与有机质含量(TOC)分布

    数据来自文献[10, 17]。

    Figure  2.  Distribution of maturity (Ro) and organic matter content (TOC) in Big Sandy shale gas-producing area of Appalachian Basin, USA

    图  3  美国Appalachian盆地Big Sandy页岩气产区北东—南西向地层剖面

    据参考文献[9],井位见图 2

    Figure  3.  NE-SW stratigraphic correlation in Big Sandy shale gas-producing area of Appalachian Basin, USA

    图  4  美国Appalachian盆地Big Sandy页岩气田及周边构造简图

    据参考文献[20]。

    Figure  4.  Tectonic units in and around Big Sandy shale gas-producing area of Appalachian Basin, USA

    图  5  美国典型页岩月产量递减曲线

    据参考文献[26]。

    Figure  5.  Decline curves of monthly production for typical shale gas plays in USA

    图  6  四川盆地东南缘过PY1、ZY1井地震剖面

    测线位置见图 1

    Figure  6.  Seismic profile crossing wells PY1 and ZY1, southeastern margin of Sichuan Basin

    图  7  四川盆地及周缘残留向斜地层压力系数与埋深关系

    Figure  7.  Relationship between formation pressure coefficient and burial depth in residual syncline in Sichuan Basin and its periphery

    表  1  美国已经开发的典型常压页岩特征数据来自参考文献[27-28]。

    Table  1.   Characteristics of typical normally-pressured shales developed in USA

    页岩气藏 地区 地层时代 构造沉积背景 岩性 有机碳含量/% 成熟度/% 孔隙度/% 压力系数 吸附气含量占比/% 单井日产/104 m3 平均直井产量/104 m3 平均水平井产量/108 m3
    Ohio Appalachian盆地Big Sandy地区 上泥盆统 前陆浅海陆棚 富含有机质及石英页岩夹粉砂岩 2~6 0.6~1.5 2~6 0.5~0.7 50 850~14 160 283~1 416 水平井少
    Lewis San Juan盆地 上白垩统 前陆近海 富含有机质及石英页岩夹粉砂岩 0.6~3.2 0.8~1.5 3~5 0.50~0.52 60~85 2 830~5 660 283~1 416 水平井少
    Marcellus Appalachian盆地西南 中泥盆统 前陆陆棚—斜坡 硅质—黏土页岩 2~8 1.3~3 2~7 0.7~1.2(常压区) 40 14 160~10 1940 3 964 85~113
    Antrim Michigan盆地 上泥盆统 克拉通 硅质页岩 11 0.4~0.6 9 0.7~0.8 70 1 132~14 160 2 124 水平井少
    Fayetteville Arkoma盆地 密西西比系 前陆陆棚 硅质页岩 2~10 1.5~4 4~5 0.8~1 50 14 160 566~1 699 17~57
    Niobrara Denver盆地 上白垩统 前陆陆棚 细粒白垩页岩 1.5~4 1 7~12 0.6~0.98 生物气区大于70 850~1 416
    Barnett Fort Worth盆地 密西西比系 前陆盆地 硅质页岩 2~7 1~2 4~10 1~1.2(常压区) 35 16 990~87 780 3 964 71
    下载: 导出CSV

    表  2  四川盆地东南缘不同区块典型井龙一段页岩评价参数对比

    Table  2.   Evaluation parameters of shale from first member of Longmaxi Formation in typical wells in different blocks, southeastern margin of Sichuan Basin

    地区 代表井 龙一段(①—⑨小层)
    厚度/m w(TOC)/% 孔隙度/% Ro/% 石英含量/% 黏土含量/% 泊松比 杨氏模量/GPa
    武隆 LY1 97 2.67 3.90 2.56 46.81 35.67 0.21 42.78
    桑柘坪 PY5 112 1.80 3.33 2.99 43.66 34.75 0.25 39.66
    南川 JY194-3 111 2.01 3.45 2.72 47.16 34.71 0.21 39.41
    焦石坝 JY1 89 2.35 4.28 2.50 38.21 41.62 0.18 35.00
    下载: 导出CSV

    表  3  四川盆地东南缘不同区块典型井优质页岩段评价参数对比

    Table  3.   Evaluation parameters of high-quality shale section in typical wells in different blocks, southeastern margin of Sichuan Basin

    地区 代表井 优质页岩(龙一段①—⑤小层)
    厚度/m w(TOC)/% 孔隙度/% Ro/% 石英含量/% 黏土含量/% 泊松比 杨氏模量/GPa
    道真 ZY1 31 3.5 4.77 2.45 52.57 26.56 0.22 22.50
    武隆 LY1 32 4.4 4.21 2.58 62.56 25.59 0.20 41.04
    桑柘坪 PY5 24 2.9 4.23 3.17 47.32 32.73 0.21 35.83
    南川 JY194-3 35 3.2 3.77 2.72 54.87 28.64 0.18 40.54
    焦石坝 JY1 38 3.6 5.86 2.65 48.56 31.53 0.15 33.00
    下载: 导出CSV

    表  4  重庆市东南部桑柘坪向斜页岩气井生产参数

    Table  4.   Production parameters of shale gas wells in Sangzheping syncline, southeastern Chongqing city

    代表井 测试时间 测试日产气量/104 m3 关井前日产气量/104 m3 累计试采天数/d 开井天数/d 累产气量/104 m3 平均日产气量/104 m3 备注
    PY1 2012.07 2.52 0.62 1 431 786 666.7 0.85
    PY2 2015.02 1.11 0.48 386 279 147.0 0.53
    PY3 2013.04 3.80 0.69 1 177 1 028 931.0 0.91
    PY4 2014.05 2.68 0.83 667 542 515.3 0.95
    PY5 2019.07 3.50 184 179 219.2 1.96 刚投产,每天15 h以销定产
    下载: 导出CSV

    表  5  四川盆地东南缘典型井地层压力系数与游离气含量

    Table  5.   Formation pressure coefficient and free gas content of typical wells, southeastern margin of Sichuan Basin

    代表井 地层压力系数 游离气比例/% 测试日产气量/104 m3 套压/MPa
    JY194-3 1.32 64.9 34.3 20.7
    LY1 1.08 56.0 4.6 10.1
    PY1 0.96 43.7 2.52 2.68
    下载: 导出CSV
  • [1] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [2] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm

    ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
    [3] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm

    ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
    [4] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm

    GUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm
    [5] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
    [6] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm

    GUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm
    [7] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905001.htm

    FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905001.htm
    [8] 何希鹏, 齐艳平, 何贵松, 等. 渝东南构造复杂区常压页岩气富集高产主控因素再认识[J]. 油气藏评价与开发, 2019, 9(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905004.htm

    HE Xipeng, QI Yanping, HE Guisong, et al. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing[J]. Reservoir Evaluation and Development, 2019, 9(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905004.htm
    [9] DE WITT W JR, PERRY W J JR, WALLACE L G. Oil and gas data from Devonian and Silurian rocks in the Appalachian Basin: U.S. Geological Survey miscellaneous investigations series map[DB/OL]. [2020-08-02]. http://pubs.er.usgs.gov/publication/i917B.
    [10] KUUSKRAA V A, WICKS D E. Technically recoverable Devonian shale gas in West Virginia[R]. Washington: Lewin and Associates, Inc., 1984: 1-119.
    [11] ROWAN E L, RYDER R T, REPETSKI J E, et al. Initial results of a 2D burial/thermal history model, central Appalachian Basin, Ohio and West Virginia[R]. [s. l. ]: U.S. Geological Survey Publication, 2004: 1-28.
    [12] ZIELINSKI R E, Mclver R D. Resource and exploration assessment of the oil and gas potential in the Devonian shales of the Appalachian Basin[R]. Miamisburg: U.S. Department of Energy, 1982, 1-326.
    [13] MILICI R C. Autogenic gas (self sourced) from shales: an example from the Appalachian Basin[M]//HOWELL D G. The future of energy gases. [s. l. ]: U.S. Geological Survey Professional Paper 1570, 1993: 253-278.
    [14] BOSWELL R M, HEIM L R, WRIGHTSTONE G R, et al. Play Dvs: Upper Devonian Venango sandstones and siltstones[M]//ROEN J B, WALKER B J. The atlas of major Appalachian gas plays. Morgantown: West Virginia Geological and Economic Survey, 1996: 63-69.
    [15] KENDRICK D. Horizontal well stimulation; what we know and what to look for[C/OL]//Indiana Oil and Gas Association Annual Dinner Meeting and Expo, Indiana, October 2, 2009, Indiana Oil and Gas Association, Indiana[2020-08-02]. https://www.indianaoga.org/annual-meeting.html.
    [16] WRIGHTSTONE G. Marcellus shale: geologic controls on production[R/OL]//AAPG Annual Convention, Denver Colorado, USA, June 7-10, 2009. [2020-08-05]. http://www.searchanddiscovery.com/documents/2009/10206wrightstone/.
    [17] ROWAN E L. Burial and thermal history of the central Appalachian Basin, based on three 2-D models of Ohio, Pennsylvania, and West Virginia[R]. [s. l. ]: U.S. Geological Survey Publication, 2006: 1-35.
    [18] MILICI R C, SWEZEY C S. Assessment of Appalachian Basin oil and gas resources: Devonian shale: Middle and Upper Paleozoic total petroleum system: open-file report series 2006-1237[R]. Reston, VA: U.S. Geological Survey, 2006.
    [19] ROEN J B, WALKER B J. The atlas of major Appalachian gas plays: West Virginia Geological and Economic Survey publication V-25[R]. Morgantown: [s. n. ], 1996: 1-201.
    [20] CHARPENTIER R R, DE WITT W JR, CLAYPOOL G E, et al. Estimates of unconventional natural gas resources of the Devonian shales of the Appalachian Basin[M]//ROEN J B, KEPFERLE R C. Petroleum geology of the Devonian and Mississippian black shale of eastern North America. [s. l. ]: U.S. Geological Survey Bulletin 1909B, 1993: N1-N20.
    [21] WOZNIAK G, VACTOR R T, HINA D S. Completion optimization in the Lower Huron shale in Kentucky[C]//Proceedings of SPE Eastern Regional Meeting. Morgantown: Society of Petro-leum Engineers, 2010: 17.
    [22] KENDRICK D E, PUSKAR M P, SCHLOTTERBECK S T. Ultralightweight proppants: a field study in the Big Sandy Field of eastern Kentucky[C]//Proceedings of SPE Eastern Regional Meeting. Morgantown: Society of Petroleum Engineers, 2005.
    [23] SHUMAKER R C. Porous fracture facies in Devonian shales of eastern Kentucky and West Virginia[M]//WHEELER R L, DEAN C S. Proceedings western limit of detachment and related structures in the Appalachian Foreland. [s. l. ]: U.S. Department of Energy Morgantown Energy Technology Center DOE/METC/SP-80/23, 1980: 124-132.
    [24] YOUNG D M. Deep drilling through Cumberland overthrust block in southwestern Virginia[J]. AAPG Bulletin, 1957, 41(11): 2567-2573.
    [25] SHUMAKER R C. Structural parameters that affect Devonian shale gas production in West Virginia and eastern Kentucky[M]//ROEN J B, KEPFERLE R C. Petroleum geology of the Devonian and Mississippian black shale of eastern North America. [s. l. ]: U.S. Geological Survey, 1993: K1-K38.
    [26] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
    [27] HILL D G, NELSON C R. Gas productive fractured shales: an overview and update[J]. Gas Tips, 2000, 6(2): 4-13.
    [28] 蒋恕, 唐相路, OSBORNE S, 等. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例[J]. 地球科学, 2017, 42(7): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707004.htm

    JIANG Shu, TANG Xianglu, OSBORNE S, et al. Enrichment factors and current misunderstanding of shale oil and gas: case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707004.htm
    [29] 刘树根, 冉波, 郭彤楼, 等. 四川盆地及周缘下古生界富有机质黑色页岩: 从优质烃源岩到页岩气产层[M]. 北京: 科学出版社, 2014.

    LIU Shugen, RAN Bo, GUO Tonglou, et al. From oil-prone source rock to gas-producing shale reservoir Lower Palaeozoic organic-matter-rich black shale in the Sichuan Basin and its periphery[M]. Beijing: Science Press, 2014.
    [30] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba Shale Gas Field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    [31] 郭彤楼, 曾萍. 复杂构造区页岩气地质特征、资源潜力与成藏关键因素[M]. 北京: 科学出版社, 2017.

    GUO Tonglou, ZENG Ping. Geological characteristics, potential resources and key factors of shale gas enrichment in complex structure area[M]. Beijing: Science Press, 2017.
    [32] 张金川. 中国页岩气地质[M]. 上海: 华东理工大学出版社, 2017.

    ZHANG Jinchuan. Shale gas geology of China[M]. Shanghai: East China University of Science and Technology Press, 2017.
    [33] JIANG Shu, TANG Xianglu, LONG Shengxiang, et al. Reservoir quality, gas accumulation and completion quality assessment of Silurian Longmaxi marine shale gas play in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2017, 39: 203-215.
    [34] HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346.
    [35] ZAGORSKI W A, WRIGHTSTONE G R, BOWMAN D C. The Appalachian Basin Marcellus gas play: its history of development, geologic controls on production, and future potential as a world-class reservoir[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century, AAPG memoir 97. [s. l. ]: AAPG, 2012: 172-200.
    [36] ENGELDER T, LASH G G, UZCÁTEGUI R S. Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin[J]. AAPG Bulletin, 2009, 93(7): 857-889.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  912
  • HTML全文浏览量:  209
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2020-08-23
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回