Advance of basin modeling key techniques: hydrocarbon migration and accumulation simulation
-
摘要: 在总结盆地模拟传统的研究内容的基础上,指出新的应用领域及面临的技术难题,重点论述3种油气运聚模拟技术的现状和进展。(1)流线模拟技术。从油藏数值模拟技术演化而来,该技术是一种快速模拟技术,适用于构造油气藏的模拟,但不能有效模拟岩性地层油气藏。通过建立简化的三维地质模型,实现对三维圈闭空间和储层物性的描述,解决了岩性地层油气藏的模拟难题,实现了流线模拟技术的跨跃。(2)侵入逾渗模拟技术。该技术已经比较实用,但在复杂地质条件下对断面、不整合面等输导体系的刻画还不够细化,无法对断面、不整合面单独赋参数。三维输导体系网格建模方法和基于输导体系网格系统的三维油气追踪技术,能够有效地透视油气运移路径,模拟油气聚集、油藏调整和次生油藏的生成过程,使该技术得到较大发展。(3)三维达西流模拟技术。该技术是一种理论上最先进的技术,但地质参数很难达到其数值模型的精度要求。因此,改进地质网格模型,精确刻画地质参数,是三维达西流模型发展的重要内容之一。建立顺层柱状PEBI(Perpendicular Bisection)网格三维地质模型,构建变网格条件下的渗流方程,引入矢量渗透率,能够较好地解决复杂地质条件下的渗流问题,使模拟技术得到改进。Abstract: This paper summarizes traditional basin modeling, points out new application fields and technical problems, and discusses the present situation and progress of three kinds of hydrocarbon migration and accumulation simulation techniques.(a) Flowpath modeling. Evolved from reservoir numerical simulation, this technology is rapid and is suitable for structural reservoirs; however, it cannot effectively simulate stratigraphic reservoirs.By establishing a simplified 3D geological model, the description of 3D trap space and reservoir physical properties is realized and the problem of stratigraphic reservoir simulation is solved, and the leap of streamlined simulation technology is realized.(b) Invasion percolation. It is now practical, but the description of fault, unconformity surface and other transport systems under complex geological conditions is not detailed enough to assign parameters to the fault or unconformity surface alone.The 3D mesh modeling method of transport systems and 3D path tracing technology based on a Mesh System can effectively analyze the oil-gas migration path, simulate the process of oil-gas accumulation, reservoir adjustment and secondary reservoir formation, and improve the technology greatly.(c) 3D Darcy flow. This is the most advanced technology in theory, but it is difficult to constrain the geological parameters with sufficient precision. Therefore, improving the geological grid model and accurately describing the geological parameters are important in the development of a 3D Darcy flow model. Establishing a 3D geological model of the bedding columnar PEBI (Perpendicular Bisection) grid, constructing the seepage equation under the condition of variable grid, and introducing vector permeability, can solve the seepage problem under complex geological conditions, and improve the simulation technology.
-
图 4 输导体系三维网格形成过程示意
据郭秋麟等[35]修改。
Figure 4. Three-dimensional mesh formation process for transportation systems
-
[1] BALLY A W. PD 1(3) A geodynamic scenario for hydrocarbon occurrences[C]//Proceedings of 9th World Petroleum Congress. Tokyo, Japan: World Petroleum Congress, 1975. [2] 朱夏. 含油气盆地研究方向的探讨[J]. 石油实验地质, 1983, 5(2): 116-123. http://www.sysydz.net/article/id/a26f6963-2f56-4064-b627-d2bc0aff54d4ZHU Xia. Approaches to the research of petroliferous basins[J]. Petroleum Geology & Experiment, 1983, 5(2): 116-123. http://www.sysydz.net/article/id/a26f6963-2f56-4064-b627-d2bc0aff54d4 [3] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer-Verlag, 1984. [4] 郭秋麟, 米石云, 石广仁, 等. 盆地模拟原理方法[M]. 北京: 石油工业出版社, 1998.GUO Qiulin, MI Shiyun, SHI Guangren, et al. Basin modeling principle[M]. Beijing: Petroleum Industry Press, 1998. [5] 郭秋麟, 谢红兵, 任洪佳, 等. 盆地与油气系统模拟[M]. 北京: 石油工业出版社, 2018.GUO Qiulin, XIE Hongbing, REN Hongjia, et al. Basin and petro-leum systems modeling[M]. Beijing: Petroleum Industry Press, 2018. [6] 石广仁. 油气盆地数值模拟方法[M]. 3版. 北京: 石油工业出版社, 2004.SHI Guangren. Numerical modeling of petroliferous basin[M]. 3rd ed. Beijing: Petroleum Industry Press, 2004. [7] HANTSCHEL T, KAUERAUF A I. Fundamentals of basin and petroleum systems modeling[M]. Berlin: Springer-Verlag, 2009. [8] 徐旭辉, 朱建辉, 江兴歌, 等. TSM盆地模拟原理方法与应用[J]. 石油实验地质, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729XU Xuhui, ZHU Jianhui, JIANG Xingge, et al. Principle of TSM basin simulation system and its application[J]. Petroleum Geo-logy and Experiment, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729 [9] 郑见超, 李斌, 吴海燕, 等. 基于盆地模拟技术的烃源岩热演化史及油气关系研究: 以塔里木盆地玉尔吐斯组为例[J]. 油气地质与采收率, 2018, 25(5): 39-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805006.htmZHENG Jianchao, LI Bin, WU Haiyan, et al. Study on the thermal history of the source rock and its relationship with hydrocarbon accumulation based on the basin modeling technology: a case of the Yuertusi Formation of Tarim Basin[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 39-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805006.htm [10] 王民, 卢双舫, 王文广, 等. 火山岩储层天然气运聚成藏模拟: 以徐家围子断陷深层为例[J]. 地球科学, 2017, 42(3): 397-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201703007.htmWANG Min, LU Shuangfang, WANG Wenguang, et al. Gas migration and accumulation modelling in volcanic reservoirs, Xujiaweizi Fault Depression, Songliao Basin[J]. Earth Science, 2017, 42(3): 397-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201703007.htm [11] 张学娟, 荣鹏飞, 卢双舫, 等. 火山岩定容充注物理模拟实验研究: 以松辽盆地徐家围子断陷营城组火山岩为例[J]. 石油实验地质, 2018, 40(6): 864-870. doi: 10.11781/sysydz201806864ZHANG Xuejuan, RONG Pengfei, LU Shuangfang, et al. Physical simulation of volumetric charging of volcanic rock: case study of volcanic rock in Yingcheng Formation of Xujiaweizi Fault Depression in Songliao Basin[J]. Petroleum Geology & Experiment, 2018, 40(6): 864-870. doi: 10.11781/sysydz201806864 [12] SHI Bingbing, CHANG Xiangchun, XU Youde, et al. Charging history and fluid evolution for the Carboniferous volcanic reservoirs in the western Chepaizi Uplift of Junggar Basin as determined by fluid inclusions and basin modelling[J]. Geological Journal, 2020, 55(4): 2591-2614. doi: 10.1002/gj.3527 [13] 苏玉亮, 鲁明晶, 李萌, 等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质, 2019, 40(3): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903020.htmSU Yuliang, LU Mingjing, LI Meng, et al. Numerical simulation of shale oil coupled flow in multi-pore media[J]. Oil & Gas Geology, 2019, 40(3): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903020.htm [14] 姜瑞忠, 原建伟, 崔永正, 等. 考虑岩石变形的页岩气藏双重介质数值模拟[J]. 油气地质与采收率, 2019, 26(4): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904011.htmJIANG Ruizhong, YUAN Jianwei, CUI Yongzheng, et al. Dual media numerical simulation of shale gas reservoirs considering rock deformation[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904011.htm [15] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068 [16] 成俊, 李少荣, 陈朝刚, 等. 含油气系统模拟技术在渝东南地区下古生界页岩气层的应用[J]. 石油地质与工程, 2018, 32(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201802009.htmCHENG Jun, LI Shaorong, CHEN Chaogang, et al. Application of petroleum system modeling in Lower Paleozoic shale gas layer in southeast Chongqing[J]. Petroleum Geology and Engineer-ing, 2018, 32(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201802009.htm [17] SOWIZ·DZ·AŁ K, SŁOCZYŃSKI T, SOWIZ·DZ·AŁ A, et al. Miocene biogas generation system in the Carpathian Foredeep (SE Poland): a basin modeling study to assess the potential of unconventional mudstone reservoirs[J]. Energies, 2020, 13(7): 1838. doi: 10.3390/en13071838 [18] ALIPOUR M, ALIZADEH B, CHEHRAZI A, et al. Combining biodegradation in 2D petroleum system models: application to the Cretaceous petroleum system of the southern Persian Gulf Basin[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 2477-2486. doi: 10.1007/s13202-019-0716-8 [19] 丛晓荣, 张伟, 刘丽华, 等. 天然气水合物油气系统模拟新技术方法与应用[J]. 海洋地质前沿, 2018, 34(7): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201807005.htmCONG Xiaorong, ZHANG Wei, LIU Lihua, et al. New technology for gas hydrate petroleum system modeling and its application[J]. Marine Geology Frontiers, 2018, 34(7): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201807005.htm [20] 罗晓容. 油气运聚动力学研究进展及存在问题[J]. 天然气地球科学, 2003, 14(5): 337-346. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200305002.htmLUO Xiaorong. Review of hydrocarbon migration and accumulation dynamics[J]. Natural Gas Geoscience, 2003, 14(5): 337-346. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200305002.htm [21] 石广仁. 油气运聚定量模拟技术现状、问题及设想[J]. 石油与天然气地质, 2009, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200901004.htmSHI Guangren. Status, problems and proposals of the quantitative modeling techniques for hydrocarbon migration and accumulation[J]. Oil & Gas Geology, 2009, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200901004.htm [22] 刘可禹, 刘建良. 盆地和含油气系统模拟(BPSM)研究现状及发展趋势[J]. 石油科学通报, 2017, 2(2): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702001.htmLIU Keyu, LIU Jianliang. Current status and future development trends of Basin and Petroleum System Modeling (BPSM)[J]. Petroleum Science Bulletin, 2017, 2(2): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702001.htm [23] BAUR F, SCHEIRER A H, PETERS K E. Past, present, and future of basin and petroleum system modeling[J]. AAPG Bulletin, 2018, 102(4): 549-561. [24] CURRY D J. Future directions in basin and petroleum systems modelling: a survey of the community[J]. AAPG Bulletin, 2019, 103(10): 2285-2293. [25] 卢玉峰, 孙德强, 王智锋, 等. 三维流线模拟技术在鸭儿峡油田L油藏注采单元评价中的应用[J]. 中外能源, 2018, 23(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201807009.htmLU Yufeng, SUN Deqiang, WANG Zhifeng, et al. Application of 3D streamline simulation technology to injection-production unit evaluation in reservoir L of Yaerxia Oilfield[J]. Sino-Global Energy, 2018, 23(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201807009.htm [26] 左立华, 于伟, 苗继军, 等. 天然裂缝多孔介质中流体运移的流线模拟[J]. 石油勘探与开发, 2019, 46(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901012.htmZUO Lihua, YU Wei, MIAO Jijun, et al. Streamline modeling of fluid transport in naturally fractured porous medium[J]. Petroleum Exploration and Development, 2019, 46(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901012.htm [27] 闫坤, 韩培慧, 曹瑞波, 等. 聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J]. 油气藏评价与开发, 2019, 9(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201902008.htmYAN Kun, HAN Peihui, CAO Ruibo, et al. Establishment and application of numerical simulation identification method for dominant seepage channels after polymer flooding[J]. Reservoir Evaluation and Development, 2019, 9(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201902008.htm [28] 吴冲龙, 刘海滨, 毛小平, 等. 油气运移和聚集的人工神经网络模拟[J]. 石油实验地质, 2001, 23(2): 203-212. doi: 10.11781/sysydz200102203WU Chonglong, LIU Haibin, MAO Xiaoping, et al. Artificial neural network simulation on hydrocarbon migration and accumulation[J]. Petroleum Geology & Experiment, 2001, 23(2): 203-212. doi: 10.11781/sysydz200102203 [29] 乔永富, 毛小平, 辛广柱. 油气运移聚集定量化模拟[J]. 地球科学(中国地质大学学报), 2005, 30(5): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505014.htmQIAO Yongfu, MAO Xiaoping, XIN Guangzhu. Quantitative simulation of hydrocarbon migration[J]. Earth Science(Journal of China University of Geosciences), 2005, 30(5): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505014.htm [30] 周东延. 油气动态富集理论: 油气勘探理论、方法发展体系[J]. 中国石油勘探, 2012, 17(3): 19-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201203006.htmZHOU Dongyan. Dynamic hydrocarbon accumulation theory: deve-lopment system of petroleum exploration theories and methods[J]. China Petroleum Exploration, 2012, 17(3): 19-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201203006.htm [31] 万涛, 蒋有录, 董月霞, 等. 渤海湾盆地南堡凹陷油气运移路径模拟及示踪[J]. 地球科学(中国地质大学学报), 2013, 38(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301022.htmWAN Tao, JIANG Youlu, DONG Yuexia, et al. Reconstructed and traced pathways of hydrocarbon migration in Nanpu Depression, Bohai Bay Basin[J]. Earth Science(Journal of China University of Geosciences), 2013, 38(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301022.htm [32] WILKINSON D, WILLEMSEN J F. Invasion percolation: a new form of percolation theory[J]. Journal of Physics A: Mathematical and General, 1983, 16(14): 3365-3376. [33] MEAKIN P, FEDER J, FRETTE V, et al. Invasion percolation in a destabilizing gradient[J]. Physical Review A, 1992, 46(6): 3357-3368. [34] MEAKIN P, WAGNER G, VEDVIK A, et al. Invasion percolation and secondary migration: experiments and simulations[J]. Marine and Petroleum Geology, 2000, 17(7): 777-795. [35] CARRUTHERS D J, WIJNGAARDEN M D L V. Modeling viscous-dominated fluid transport using modified invasion percolation techniques[J]. Journal of Geochemical Exploration, 2000(69/70): 669-672. [36] CARRUTHERS D J. Modeling of secondary petroleum migration using invasion percolation techniques[M]//DUPPENBECKER S, MARZI R. Multidimensional basin modeling. Tulsa: AAPG/Datapages Discovery Series, 2003, 7: 21-37. [37] 周波, 金之钧, 罗晓容, 等. 尺度放大时逾渗模型中的油气运移路径变化规律探讨[J]. 石油与天然气地质, 2007, 28(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200702010.htmZHOU Bo, JIN Zhijun, LUO Xiaorong, et al. Changing patterns of hydrocarbon migration pathway in a up-scaling percolation model[J]. Oil & Gas Geology, 2007, 28(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200702010.htm [38] HANTSCHEL T, KAUERAUF A I, WYGRALA B. Finite element analysis and ray tracing modeling of petroleum migration[J]. Marine and Petroleum Geology, 2000, 17(7): 815-820. [39] 郭秋麟, 杨文静, 肖中尧, 等. 不整合面下缝洞岩体油气运聚模型: 以塔里木盆地碳酸盐岩油藏为例[J]. 石油实验地质, 2013, 35(5): 495-499. doi: 10.11781/sysydz201305495GUO Qiulin, YANG Wenjing, XIAO Zhongyao, et al. Hydrocarbon migration and accumulation model of fractured-vuggy reservoir under unconformity surface: a case study of carbonate reservoir in Tarim Basin[J]. Petroleum Geology and Experiment, 2013, 35(5): 495-499. doi: 10.11781/sysydz201305495 [40] 郭秋麟, 刘继丰, 陈宁生, 等. 三维油气输导体系网格建模与运聚模拟技术[J]. 石油勘探与开发, 2018, 45(6): 947-959. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806004.htmGUO Qiulin, LIU Jifeng, CHEN Ningsheng, et al. Mesh model building and migration and accumulation simulation of 3D hydrocarbon carrier system[J]. Petroleum Exploration and Development, 2018, 45(6): 947-959. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806004.htm [41] YIELDING G, FREEMAN B, NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917. [42] 冯勇, 石广仁, 米石云, 等. 有限体积法及其在盆地模拟中的应用[J]. 西南石油学院学报, 2001, 23(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200105003.htmFENG Yong, SHI Guangren, MI Shiyun, et al. Finite volume method and its application in basin modeling[J]. Journal of Southwest Petroleum Institute, 2001, 23(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200105003.htm [43] 石广仁, 张庆春, 马进山, 等. 三维三相烃类二次运移模型[J]. 石油学报, 2003, 24(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302007.htmSHI Guangren, ZHANG Qingchun, MA Jinshan, et al. 3-D and 3-phase model for secondary migration of hydrocarbon[J]. Acta Petrolei Sinica, 2003, 24(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302007.htm [44] MELLO U T, RODRIGUES J R P, ROSSA A L. A control-volume finite-element method for three-dimensional multiphase basin model-ing[J]. Marine and Petroleum Geology, 2009, 26(4): 504-518. [45] 石广仁, 马进山, 常军华. 三维三相达西流法及其在库车坳陷的应用[J]. 石油与天然气地质, 2010, 31(4): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201004007.htmSHI Guangren, MA Jinshan, CHANG Junhua. 3-D 3-phase Darcy flow method and its application to the Kuqa Depression[J]. Oil & Gas Geology, 2010, 31(4): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201004007.htm [46] 郭秋麟, 陈宁生, 谢红兵, 等. 基于有限体积法的三维油气运聚模拟技术[J]. 石油勘探与开发, 2015, 42(6): 817-825. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506018.htmGUO Qiulin, CHEN Ningsheng, XIE Hongbing, et al. Three-dimensional hydrocarbon migration and accumulation modeling technique based on finite volume method[J]. Petroleum Exploration and Development, 2015, 42(6): 817-825. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506018.htm