Characteristics and environment indication of mud shale undergone low temperature metamorphism: a case study of Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, Altyn Tagh fault
-
摘要: 阿尔金西北缘红柳沟Ⅰ号剖面的新元古界冰沟南组泥页岩发育于被动大陆边缘盆地,是一套与硅质岩互层、浅变质、厚近60 m、曾具有生烃能力的陆棚沉积。通过实测地层剖面、矿物学及地球化学研究,探讨了其构造属性、物源区、风化作用及沉积环境。研究表明:该泥页岩主要属于富硅黏土岩、富泥硅质页岩,次为泥—硅混合页岩;与澳大利亚后太古宙页岩(PAAS)相比,其Si、Mg、K、P、Sc、Y、Hf、Th、Sc等含量相似,Ti、Mn、Fe、Ta、δEun、δCen和ΣREE等值相对较高,Al、Ca、Na,Nb和Zr等值较低。冰沟南组泥页岩由再循环沉积碎屑、中基性及中酸性侵入岩作为第一沉积物的来源,与大陆上地壳硅铝质和一般页岩组成接近;物源区为温暖、湿润条件下中等化学风化条件;自下而上可划分出3个厌氧—缺氧为主、偶夹有氧化的沉积旋回;下部叠加了热流体改造。统计表明,40%左右黏土含量的泥页岩段富集主要微量元素(稀土)及有机质,是陆棚中的贫氧—缺氧、生产力较高、生烃潜力最好层段。Abstract: The Neoproterozoic Binggounan Formation mud shale in the Hongliugou Ⅰ section on the northwestern margin of the Altyn Tagh fault was deposited in a passive continental margin. They are shelf sediments about 60 m thick, interbedded with siliceous rocks, undergone a low temperature thermodynamic metamorphism, and had hydrocarbon generation potential. The tectonic background, provenance, weathering and sedimentary environment of the mud shale were discussed with regard to stratigraphic sections, mineralogy and geochemical analyses. The mud shale was mainly composed of silica-rich clay rock and mud-rich siliceous shale, followed by mud-silica mixed shale. They have simila-rities in Si, Mg, K, P, Sc, Y, Hf, Th Sc contents compared with the Post Archaean Australian shale (PAAS). The Ti, Mn, Fe, Ta contents and δEun, δCen, ΣREE values are higher, while the Al, Ca, Na, Nb and Zr contents are lower. The primitive sediment sources of the Binggounan mud shale were recycled sedimentary clasts, intermediate mafic and acid intrusive rocks, similar to a normal shale and arenites argillites and ensialic of continental upper crust in composition. The shale has undergone moderate chemical weathering in warm and humid conditions. The formation was divided into three sedimentary cycles from bottom to top, mainly anaerobic and anoxic, and occasionally oxidized. Hydrothermal alteration also occured in the lower section. The mud shale with a clay content of about 40% is rich in trace elements (REE) and organic matter, which was deposited in a suboxic to anoxic section on the shelf, showing a high productivity and hydrocarbon-generation potential.
-
Key words:
- mud shale /
- mineral and petrology /
- geochemistry /
- Binggounan Formation /
- Neoproterozoic /
- Altyn Tagh fault
-
图 3 阿尔金西北缘红柳沟Ⅰ号剖面冰沟南组野外照片
资料来源同图 1。
a.剖面部分景观;b.中下部的绿色粉砂质泥岩;c.板岩;d.灰绿色板岩与硅质岩;e.片理化发育的黑色页岩(采样点HLG-67);f.上部灰绿色板岩与片岩(原为灰绿色泥页岩与粉砂质泥岩)Figure 3. Field photographs of Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault
图 4 阿尔金西北缘红柳沟Ⅰ号剖面新元古界冰沟南组泥页岩矿物分类[7]
Figure 4. Mineral classification of mud shale in Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault
图 7 阿尔金西北缘红柳沟Ⅰ号剖面冰沟南组泥页岩部分微量元素及比值与主动大陆边缘盆地ACM(a)、被动大陆边缘盆地PCM(b)、大陆岛弧CIA(c)和大洋岛弧OIA(d)平均值对比[3, 8-9]
Figure 7. Trace element contents and ratios of mud shale in Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault, compared with the average values of active continental margin (ACM) (a), passive continental margin (PCM) (b), continental island arc (CIA) (c) and ocean island arc (OIA) (d)
图 8 阿尔金西北缘红柳沟Ⅰ号剖面冰沟南组泥页岩Th-Sc (a)[24]、Th/ Sc-La/Sc (b)[25]及Th/ Sc-Zr/Sc (c)关系投点图[9]
黑实线表示源区分别为铁镁质-长英质成分母岩时,沉积物投点的趋势线;带箭头虚线表示经沉积、分选、再循环过程沉积物中碎屑锆石含量的变化趋势。
Figure 8. Th-Sc(a), Th/Sc-La/Sc(b) and Th/Sc-Zr/Sc(c) values of mud shale in Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault
图 11 阿尔金西北缘红柳沟Ⅰ号剖面冰沟南组泥页岩CIA-A-CN-K关系投点图[29]
Figure 11. CIA-A-CN-K diagram of mud shale in Neopro- terozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault
表 1 阿尔金西北缘红柳沟Ⅰ号剖面新元古界冰沟南组泥页岩矿物组成
Table 1. Mineral compostion of mud shale in Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, NW margin of Altyn Tagh fault
% 样品号 野外定名 黏土 石英 钾长石 斜长石 方解石 白云石 菱铁矿 石盐 黄铁矿 石膏 硬石膏 钙芒硝 岩相 HLG-8 泥岩 33.4 41.8 1.0 2.0 0.8 6.9 12.3 - 0.2 0.2 1.4 - 泥-硅混合页岩 HLG-28 粉砂质泥岩 40.3 48.1 1.1 3.3 0.9 1.0 2.9 - 0.7 - 1.7 - 富泥硅质页岩 HLG-51 泥页岩 56.4 29.7 0.7 2.7 0.6 0.8 2.5 - 5.1 - 1.5 - 富硅黏土质页岩 HLG-53 泥板岩 66.1 26.2 1.9 2.0 - 0.8 1.9 - 0.1 - 1.0 富硅黏土质页岩 HLG-60 泥页岩 30.1 64.7 0.4 2.5 0.7 0.1 0.7 - 0.4 - 0.4 - 富泥硅质页岩 HLG-61 泥页岩 46.0 40.7 1.3 4.8 0.3 - 2.1 - 0.7 - 4.1 - 泥-硅混合页岩 HLG-63 粉砂质泥岩 58.6 28.0 3.5 3.9 0.1 1.3 0.9 1.0 0.6 - - 2.1 富硅黏土质页岩 HLG-64 泥页岩 40.3 54.0 0.6 1.7 0.6 0.4 1.3 - 0.1 - 1.0 - 富泥硅质页岩 HLG-65 粉砂质泥岩 57.2 36.3 1.8 1.0 - 1.2 1.7 - 0.6 0.2 - - 富硅黏土质页岩 HLG-66-1 泥页岩 37.6 54.5 0.7 1.1 3.2 0.9 0.7 - 0.6 - 0.7 - 富硅黏土质页岩 HLG-67 泥页岩 44.3 48.8 1.1 1.5 0.8 0.7 1.3 0.2 0.4 - 0.9 - 富泥硅质页岩 HLG-68 钙质粉砂岩 14.8 34.2 0.2 2.9 39.1 8.2 0.3 - - - 0.3 - 富陆屑碳酸盐岩 -
[1] BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. doi: 10.1086/628815 [2] BHATIA M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113. http://www.onacademic.com/detail/journal_1000033949482210_c714.html [3] BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292 [4] 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 12-15.Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional geology of Xinjiang Uygur autonomous region[M]. Beijing: Geological Publishing House, 1993: 12-15. [5] 王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htmWANG Guocan, WEI Qirong, JIA Chunxing, et al. Some ideas of Precambrian geology in the East Kunlun, China[J]. Geological Bulletin of China, 2007, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm [6] 王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004, 11(4): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404019.htmWANG Guocan, WANG Qinghai, JIAN Ping, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers, 2004, 11(4): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404019.htm [7] 王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htmWANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm [8] TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific, 1985: 57-277. [9] MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geoche-mical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of American Special Paper, 1993, 284: 21-40. [10] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社: 1984: 50-371.LIU Yingjun, CAO Liming, LI Zhaolin, et al. Element geoche-mistry[M]. Beijing: Science Press, 1984: 50-371. [11] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 34-56.LIU Yingjun, CAO Liming. Element geochemical introduction[M]. Beijing: Geological Publishing House, 1987: 34-56. [12] ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. doi: 10.1086/629071 [13] YU Bingsong, DONG Hailiang, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436. doi: 10.1016/j.jseaes.2008.07.003 [14] SAVOY L E, STEVENSON R K, MOUNTJOY E W. Provenance of Upper Devonian-Lower Carboniferous miogeoclinal strata, southeastern Canadian Cordillera: link between tectonics and sedimentation[J]. Journal of Sedimentary Research, 2000, 70(1): 181-193. doi: 10.1306/2DC40909-0E47-11D7-8643000102C1865D [15] MOLNAR P, LYON-CAENT H. Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153. doi: 10.1111/j.1365-246X.1989.tb02020.x [16] COWGILL E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh fault, NW China[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 239-255. [17] MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thicken-ing in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x [18] DELVILLE N, ARNAUD N, MONTEL J M, et al. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, eastern Qilian Shan, northeastern Tibet, China[M]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental Deformation. [S. l. ]: Geological Society of America, 2001: 269-292. [19] SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164(1): 175-187. doi: 10.1144/0016-76492005-022 [20] BAU M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of Europium[J]. Chemical Geology, 1991, 93(3/4): 219-230. [21] BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55. [22] MIR A R. Rare earth element geochemistry of post- to Neo-Archean shales from Singhbhum mobile belt, Eastern India: implications for tectonic setting and paleo-oxidation conditions[J]. Chinese Journal of Geochemistry, 2015, 34(3): 401-409. [23] COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. [24] TOTTEN M W, HANAN M A, WEAVER B L. Beyond whole-rock geochemistry of shales: the importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits[J]. GSA Bulletin, 2000, 112(7): 1012-1022. [25] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-60.CHI Qinghua, YAN Mingcai. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 1-60. [26] 褚有龙. 中国重晶石矿床的成因类型[J]. 矿床地质, 1989, 8(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198904012.htmCHU Youlong. Genetic types of barlte deposlts in China[J]. Mineral Deposit, 1989, 8(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198904012.htm [27] 彭军, 徐望国. 湘西上震旦统层状硅质岩沉积环境的地球化学标志[J]. 地球化学, 2001, 30(3): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103012.htmPENG Jun, XU Wangguo. Geochemical characteristics of depositional environment of the Upper Sinian bedded siliceous rocks in western Hunan[J]. GEOCHIMICA, 2001, 30(3): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103012.htm [28] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [29] FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [30] TANG Yan, SANG Longkang, YUAN Yanming, et al. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: implications for source weathering, provenance and tectonic setting[J]. Geoscience Frontiers, 2012, 3(5): 647-660. [31] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htmFENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. CIA (Chemical Index of Alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htm [32] 孙小勇, 牟传龙, 葛祥英, 等. 四川广元—陕西镇巴地区上奥陶统五峰组地球化学特征及沉积环境意义[J]. 沉积与特提斯地质, 2016, 36(1): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201601006.htmSUN Xiaoyong, MOU Chuanlong, GE Xiangying, et al. Geochemistry and sedimentary environments of the Upper Ordovician Wufeng Formation in Guangyuan, northern Sichuan and Zhenba, southern Shaanxi[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(1): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201601006.htm [33] 陶国亮, 申宝剑, 腾格尔, 等. 风化作用对高演化黑色岩系有机质影响因素分析: 以塔里木盆地柯坪地区玉尔吐斯组为例[J]. 石油实验地质, 2016, 38(3): 375-381. doi: 10.11781/sysydz201603375TAO Guoliang, SHEN Baojian, TENGER B, et al. Weathering effects on high-maturity organic matter in a black rock series: a case study of the Yuertusi Formation in Kalpin area, Tarim Basin[J]. Petroleum Geology and Experiment, 2016, 38(3): 375-381. doi: 10.11781/sysydz201603375 [34] BERNER R A, RAISWELL R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862. [35] FRANCOIS R, HONJO S, MANGANINI S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303. [36] 昝博文, 刘树根, 冉波, 等. 扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J]. 岩石矿物学杂志, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htmZAN Bowen, LIU Shugen, RAN Bo, et al. An analysis of barite concretions from Lower Silurian Longmaxi Formation on the northern margin of the Yangtze block and their genetic mechanism[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm [37] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U.S. A[J]. Chemical Geology, 1992, 99(1/3): 65-82. [38] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. [39] TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58. [40] Dumoulin J A, Slack J F, Whalen M T, et al. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the Carboniferous-Permian lisburne group, northern Alaska[J]. USGS professional paper, 2011(1776): 1-30. [41] LEWAN M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984, 48(11): 2231-2238. [42] 伊海生, 彭军, 夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报, 1995, 13(4): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.014.htmYI Haisheng, PENG Jun, XIA Wenjie. The Late Precambrian paleo-ocean evolution of the southeast Yangtze continental margin: REE record[J]. Acta Sedimentologica Sinica, 1995, 13(4): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.014.htm [43] PATTAN J N, PEARCE N J G, MISLANKAR P G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the central Indian Ocean Basin[J]. Chemical Geology, 2005, 221(3/4): 260-278. [44] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. [45] YEASMIN R, CHEN Daizhao, FU Yong, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386. [46] 吴朝东, 储著银. 黑色页岩微量元素形态分析及地质意义[J]. 矿物岩石地球化学通报, 2001, 20(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101004.htmWU Chaodong, CHU Zhuyin. Sequential extraction of trace elements and the geological significance of fractions in black shales, west Hunan and east Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101004.htm [47] SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.