Macro-heterogeneity evaluation based on different sand body structures: a case study of Chang 8 reservoir group in Heshui area, Ordos Basin
-
摘要: 宏观非均质性是影响油田开发效果的重要因素之一,尤其是对于砂体结构复杂的三角洲沉积环境,非均质性严重制约了油藏的高效开发。以鄂尔多斯盆地合水地区上三叠统延长组长8油层组为例,通过露头剖面观测、岩心观察、测井及生产动态资料,分析砂体结构类型及特征,建立了储层宏观非均质性评价方法。研究区长8浅水三角洲发育连续叠加型、间隔叠加型、侧向单层型和砂泥互层型等4种砂体结构。层内夹层及层间隔层导致砂体空间连续性降低,连续叠加型的隔夹层发育程度及渗透率非均质性最弱,其宏观非均质性最弱;其次是间隔叠加型和侧向单层型;砂泥互层型的宏观非均质性最强。选取夹层密度Dk、夹层频率Pk和储层质量系数RQI构建层内非均质性评价指数N,N指数能够反映不同砂体结构下的单砂体层内流体驱替特征及含水率变化。选取砂岩百分比Sn、单位厚度层间砂体层数T等参数构建层间非均质性评价指数J,J指数是评价和预测油井产液强度的较好度量。因此,层内非均质性指数N和层间非均质性指数J能够用于油藏的宏观非均质性评价。Abstract: Macro-heterogeneity is one of the important factors affecting oilfield development, especially for deltaic sedimentary environments with complex sand body structures. The structure type and characteristics of sand bodies were analyzed for Chang 8 reservoir group (the eighth member of Upper Triassic Yanchang Formation) in the Heshui area of the Ordos Basin. An evaluation method for reservoir macro-heterogeneity was established based on outcrop and core observation, and logging and production performance data. Four sand body structures in the Chang 8 shallow water delta were identified, including continuous superposition, interval superposition, lateral single layer and sand-mud interbedded types. The interlayers and restraining barriers lead to the decrease of the spatial continuity of sand body. Generally, the development degree of interlayers and permeability heterogeneity of the continuous superimposed type is the weakest, and the macro-heterogeneity is the weakest, followed by the interval superposition and the lateral single layer types, while the macro-heterogeneity of sand-mud interbedding type is the strongest. The interlayer density (DK), interlayer frequency (Pk) and reservoir quality coefficient (RQI) were selected to construct the evaluation index (N) of intraformational heterogeneity. The N index can reflect the fluid displacement characteristics and water content change of single sand body within different sand body structures. The evaluation index J of interlayer heterogeneity was constructed by selecting parameters such as the percentage of sandstone (Sn) and the number of interlayer sand layers per unit thickness (T). The J index is a good measure to evaluate and predict the fluid production strength of oil wells. Therefore, the intraformational heterogeneity index (N) and interlayer heterogeneity index (J) can be used to evaluate the macro-heterogeneity of reservoirs.
-
Key words:
- macro-heterogeneity /
- interlayers /
- restraining barriers /
- sand body structure /
- Ordos Basin
-
表 1 鄂尔多斯盆地合水地区延长组长8砂体结构划分
Table 1. Structure division of Chang 8 sand body in Heshui area, Ordos Basin
表 2 鄂尔多斯盆地合水地区延长组长8储层单砂体隔层及夹层厚度统计
Table 2. Thickness of permeability barriers and interlayers of single sand bodies in Chang 8 reservoir, Heshui area, Ordos Basin
砂体类型 夹层厚度/
m夹层频率/
%夹层密度/
(条·m-1)隔层厚度/
m隔层频率/
%隔层密度/
(条·m-1))井数/
口连续叠加型 0.35 5.7 0.18 17 间隔叠加型 1.5 26.3 0.46 17 侧向单层型 5.4 43.0 0.64 17 砂泥互层型 3.2 69.3 0.78 17 表 3 鄂尔多斯盆地合水地区延长组长8油藏宏观非均质性指数与生产数据的关系统计
Table 3. Correlation between macro-heterogeneity index and production data of Chang 8 reservoir, Heshui area, Ordos Basin
类型 井号 射孔段 砂体结构类型 层内非均质性指数N 层间非均质性指数J 生产数据 顶深
/m底深/
m厚度/
m日产液量/
m3含水率/
%产液强度/
(m3·d-1·m-1)X26-25井组 X25-23 2 213.5 2 219.0 5.5 侧向单层型 0.44 2.2 2.4 100.0 0.43 X25-24 2 210.0 2 217.0 7.0 间隔叠加型 0.53 1.6 5.1 93.8 0.73 X25-25 2 169.0 2 175.0 6.0 连续叠加型 0.78 4.3 79.5 0.71 X26-24 2 245.0 2 250.0 5.0 侧向单层型 0.41 1.5 3.4 99.9 0.67 X26-26 2 153.0 2 159.0 6.0 间隔叠加型 0.74 2.3 8.6 95.9 1.44 X27-25 2 286.0 2 292.0 6.0 连续叠加型 0.65 18.8 98.5 3.14 X27-26 2 157.0 2 170.0 13.0 间隔叠加型 0.41 1.6 5.0 84.7 0.39 X44-30井组 X42-28 2 224.0 2 236.0 12.0 连续叠加型 1.10 3.9 45.3 0.33 X42-29 2 182.5 2 190.0 7.5 间隔叠加型 0.84 1.8 3.6 10.4 0.47 X42-30 2 116.0 2 125.0 9.0 侧向单层型 0.54 0.9 1.9 78.5 0.21 X43-29 2 131.5 2 148.0 16.5 间隔叠加型 0.29 0.7 2.9 98.5 0.17 X43-31 2 153.0 2 198.0 45.0 连续叠加型 0.80 2.8 24.9 0.06 X44-30 2 084.0 2 134.0 50.0 间隔叠加型 0.39 0.8 4.5 78.7 0.09 X44-31 2 053.2 2 104.0 50.8 连续叠加型 0.62 4.3 54.0 0.09 X44-32 2 089.0 2 138.0 49.0 间隔叠加型 0.45 1.2 3.2 49.7 0.07 -
[1] 李滔, 李闽, 荆雪琪, 等. 孔隙尺度各向异性与孔隙分布非均质性对多孔介质渗透率的影响机理[J]. 石油勘探与开发, 2019, 46(3): 569-579. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903016.htmLI Tao, LI Min, JING Xueqi, et al. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media[J]. Petroleum Exploration and Development, 2019, 46(3): 569-579. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903016.htm [2] 裘亦楠, 陈子琪. 油藏描述[M]. 北京: 石油工业出版, 1996: 326-344.QIU Yinan, CHEN Ziqi. Reservoir description[M]. Beijing: Petroleum Industry Press, 1996: 326-344. [3] 马立元, 胡才志, 邱桂强, 等. 鄂尔多斯盆地镇泾地区长8段储层非均质性及其结构模式[J]. 沉积学报, 2020, 38(5): 1088-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005017.htmMA Liyuan, HU Caizhi, QIU Guiqiang, et al. Heterogeneity and structural pattern of Chang 8 reservoir in Zhenjing area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1088-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005017.htm [4] 李继强, 杨棽垚, 戚志林, 等. 考虑储层层间非均质性的边水气藏气井见水时间计算模型: 以普光气田下三叠统飞仙关组气藏为例[J]. 天然气工业, 2020, 40(4): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202004013.htmLI Jiqiang, YANG Shenyao, QI Zhilin, et al. A calculation model for water breakthrough time of gas wells in gas reservoirs with edge water considering the heterogeneity between reservoirs: a case study of the Lower Triassic Feixianguan gas reservoirs in the Puguang Gas Field[J]. Natural Gas Industry, 2020, 40(4): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202004013.htm [5] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑), 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htmZHANG Guowei, MENG Qingren, YU Zaiping, et al. The orogenic process and dynamic characteristics of the Qinling orogenic belt[J]. Chinese Science (Series D), 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm [6] 杨华, 梁晓伟, 牛小兵, 等. 陆相致密油形成地质条件及富集主控因素: 以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发, 2017, 44(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701003.htmYANG Hua, LIANG Xiaowei, NIU Xiaobing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: a case of Chang 7 member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701003.htm [7] 姚永朝, 文志刚. 西峰油田长8油藏地质研究及储层评价[J]. 石油天然气学报(江汉石油学院学日报), 2005, 27(3): 419-421. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201509108.htmYAO Yongchao, WEN Zhigang. Geological research and reservoir evaluation of Chang 8 reservoir in Xifeng oilfield[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2005, 27(3): 419-421. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201509108.htm [8] 李元昊, 刘池洋, 独育国, 等. 鄂尔多斯盆地西北部上三叠统延长组长8油层组浅水三角洲沉积特征及湖岸线控砂[J]. 古地理学报, 2009, 11(3): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200903002.htmLI Yuanhao, LIU Chiyang, DU Yuguo, et al. Sedimentary characte-ristics of shallow water delta and lake shoreline control on sandbodies of Chang 8 oil-bearing interval of the Upper Triassic Yanchang Formation in northwestern Ordos Basin[J]. Journal of Palaeogeo-graphy, 2009, 11(3): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200903002.htm [9] 徐波, 廖保方, 冯晗, 等. 南堡1-1区东一段浅水三角洲水下分流河道单砂体叠置关系[J]. 大庆石油地质与开发, 2019, 38(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201901007.htmXU Bo, LIAO Baofang, FENG Han, et al. Superimposition relationships of the individual sandbody in the shallow-water-delta underwater distributary channel of member Ed1 in block Nanpu1-1[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201901007.htm [10] 陈飞, 胡光义, 范廷恩, 等. 渤海海域W油田新近系明化镇组河流相砂体结构特征[J]. 地学前缘, 2015, 22(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502022.htmCHEN Fei, HU Guangyi, FAN Tingen, et al. Sandbody architecture and sequence stratigraphy of fluvial facies, Neogene Minghuazhen Formation, W oilfield, Bohai Bay[J]. Earth Science Frontiers, 2015, 22(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502022.htm [11] 李士祥, 楚美娟, 黄锦绣, 等. 鄂尔多斯盆地延长组长8油层组砂体结构特征及成因机理[J]. 石油学报, 2013, 34(3): 435-444. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303004.htmLI Shixiang, CHU Meijuan, HUANG Jinxiu, et al. Characteristics and genetic mechanism of sandbody architecture in Chang-8 oil layer of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(3): 435-444. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303004.htm [12] 张懿, 王昌勇, 欧阳诚, 等. 鄂尔多斯盆地苏5区块盒8段砂体结构与展布特征[J]. 成都理工大学学报(自然科学版), 2017, 44(5): 602-612. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201705010.htmZHANG Yi, WANG Changyong, OUYANG Cheng, et al. Structural and distributional characteristics of sand bodies in the member 8 of Xiashihezi Formation from the Su-5 block, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(5): 602-612. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201705010.htm [13] 裘亦楠. 石油开发地质方法论(三)[J]. 石油勘探与开发, 1996, 23(4): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK604.011.htmQIU Yinan. The methodology of petroleum development geology (Ⅲ)[J]. Petroleum Exploration and Development, 1996, 23(4): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK604.011.htm [14] 于兴河. 油气储层地质学基础[M]. 2版. 北京: 石油工业出版社, 2015.YU Xinghe. Oil and gas reservoir geology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2015. [15] 李明, 戚楠, 陈朝兵, 等. 甘谷驿油田L2区特低渗储层非均质性及其对油层分布的影响[J]. 油气藏评价与开发, 2019, 9(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201902001.htmLI Ming, QI Nan, CHEN Chaobing, et al. Extra-low permeability reservoir heterogeneity and its effect on the distribution of reservoirs in L2 area of Ganguyi oilfield[J]. Reservoir Evaluation and Development, 2019, 9(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201902001.htm [16] 陈善斌, 李红英, 张占女, 等. 辫状河三角洲前缘储层特征及非均质性研究: 以渤海湾J油田东块沙河街组为例[J]. 新疆石油天然气, 2019, 15(1): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201901002.htmCHEN Shanbin, LI Hongying, ZHANG Zhannv, et al. Research on reservoir characteristics and heterogeneity of braided river delta front: a case study of the Shahejie Formation in east J oilfiled, Bohai Bay[J]. Xinjiang Oil & Gas, 2019, 15(1): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201901002.htm [17] 宋健, 何斌, 王小多, 等. 鄂尔多斯盆地海子塌油区长6油层组非均质性研究[J]. 非常规油气, 2017, 4(6): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201706014.htmSONG Jian, HE Bin, WANG Xiaoduo, et al. Heterogeneity of Chang-6 oil-bearing member of Yanchang Formation in Haizita area, Ordos Basin[J]. Unconventional Oil & Gas, 2017, 4(6): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201706014.htm [18] 蒋代琴, 文志刚, 陈建文, 等. 合水油田庄51井区长63油层储层非均质性研究[J]. 长江大学学报(自科版), 2017, 14(23): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201723003.htmJIANG Daiqin, WEN Zhigang, CHEN Jianwen, et al. The heterogeneity of Chang 63 reservoir in wellblock Zhuang-51 of Heshui oilfield[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(23): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201723003.htm [19] 闵小刚, 陈开远, 范廷恩. 井—震结合进行河流相储层非均质性表征: 以渤海湾盆地黄河口凹陷渤中263油田为例[J]. 石油与天然气地质, 2011, 32(3): 375-381.MIN Xiaogang, CHEN Kaiyuan, FAN Tingen. Heterogeneity characterization of fluvial facies reservoirs through integration of seismic and logging data: an example from Bozhong-263 oilfield in the Huanghekou Sag, the Bohai Bay Basin[J]. Oil & Gas Geology, 2011, 32(3): 375-381.