Characteristics of in situ stress of tight oil reservoirs and its influence on petrophysical properties: a case study of Upper Triassic Yanchang Formation in Ordos Basin
-
摘要: 致密储层物性及流体赋存状态均受现今地应力的影响。以往对于鄂尔多斯盆地中西部地区上三叠统延长组的岩石力学性质及地应力研究较少,制约了致密油气的高效勘探、开发。以鄂尔多斯盆地吴起、志丹及定边地区为例,利用大量薄片、物性、岩石力学、声学、全波列阵列声波测试及压裂测试资料,对3个地区长6—长8油层组的岩石力学性质、地应力特征及其对储层物性的影响进行了评价。利用测井方法识别出3种地应力状态:吴起地区长6—长8的变化不大,其现今的应力活动性较弱;志丹地区的水平应力活动性深层要大于浅层,较强的水平应力强度主要集中在长73及长8;定边地区的水平应力活动性从长6到长8整体较强,浅层的水平应力强度要略强于深层。研究区水平应力梯度有从西北向东南逐渐递增的趋势;水平主应力差的增加不是一定使岩石减孔,其造成的应力平面非均质性会使岩石孔隙度变化出现3种不同的路径;而水平主应力差的增加会造成岩石渗透率的降低,但影响并不显著。Abstract: The petrophysical properties of tight reservoirs and the state of fluid occurrence are affected by current geostress. In the past, there were few studies on the rock mechanical properties and in situ stress of the Yanchang Formation in the central and western regions of the Ordos Basin, which restricted the efficient exploration and development of tight oil and gas. A systematic study was carried out on the rock mechanical properties, in situ stress characteristics and their effects on the petrophysical properties of the Chang 6-Chang 8 reservoirs in the Wuqi, Zhidan and Dingbian areas in the Ordos Basin. A reliable method of in situ stress logging interpretation using fracturing methods and logging models was established. The Chang 6 to Chang 8 in Wuqi area is not significantly stressed. The horizontal stress activity deep in the Zhidan area is greater than that in the shallow layers, with the strong horizontal stress intensity mainly concentrated in Chang 73 and Chang 8. The horizontal stress activity of the Dingbian area is relatively strong from Chang 6 to Chang 8, and the horizontal stress intensity of the shallow layer is slightly stronger than that of the deep layer. The stress gradients in the three work areas are determined. The horizontal principal stress gradient gradually increases from northwest to southeast. Finally, the influence of horizontal compression stress on the path of rock compaction and the petrophysical properties of the reservoir are systematically discussed. It was found that the increase of σH-σh did not cause the loss of rock pores alone. The stress plane heterogeneity will cause three different paths of rock porosity changes. However, the increase of the horizontal principal stress difference will mainly cause a decrease of rock permeability.
-
Key words:
- in situ stress /
- horizontal stress difference /
- tight oil /
- reservoir /
- Yanchang Formation /
- Upper Triassic /
- Ordos Basin
-
图 2 鄂尔多斯盆地西部延长组目的层致密砂岩储层显微图像特征
a.永金491井,1 731.46 m,粒间孔及粒间溶蚀孔,长6;b.永金669井,1 839.71 m,岩屑溶孔,长6;c.永金669井,1 839.71 m,长石溶孔,长6;d.方668井,1 857.87 m,粒间孔,长7;e.方668井,1 857.87 m,微裂缝,长7;f.定探4578井,2 212.99 m,粒间孔及长石溶孔,长8;g.定探4578井,2 213.00 m,岩屑溶孔,长8;h.定探4578井,2 244.80 m,微裂缝,长8
Figure 2. Microscopic photographs of tight sandstone reservoirs in Yanchang Formation, western Ordos Basin
表 1 鄂尔多斯盆地西部研究区目的层应力梯度计算结果
Table 1. Calculated results of stress gradient of target layer, western Ordos Basin
地区 应力梯度/(MPa·m-1) σH σh σv 定边 0.013 0.008 0.026 吴起 0.031 0.016 0.026 志丹 0.042 0.029 0.026 -
[1] ZOU C N, YANG Z, TAO S Z, et al. Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: the Ordos Basin, North-Central China[J]. Earth-Science Reviews, 2013, 126: 358-369. doi: 10.1016/j.earscirev.2013.08.006 [2] 李书恒, 方国庆, 杨金龙, 等. 鄂尔多斯盆地超低渗透储层成因研究及意义[J]. 岩性油气藏, 2012, 24(6): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201206008.htmLI Shuheng, FANG Guoqing, YANG Jinlong, et al. Origin of ultra-low permeability reservoirs in Ordos Basin and its significance[J]. Northwest Oil & Gas Exploration, 2012, 24(6): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201206008.htm [3] 周家全, 张立强, 王香增, 等. 鄂尔多斯盆地富县地区长8致密砂岩成岩差异性及对储层物性的影响[J]. 油气地质与采收率, 2019, 26(3): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903007.htmZHOU Jiaquan, ZHANG Liqiang, WANG Xiangzeng, et al. Diagenetic difference and its influence on reservoir physical properties of Chang8 tight sandstone in Fuxian area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903007.htm [4] 崔维兰, 韩华峰, 张永, 等. 鄂尔多斯盆地靖边油田李家城则地区长6致密油储层微观特征与含油性[J]. 石油实验地质, 2019, 41(3): 390-397. doi: 10.11781/sysydz201903390CUI Weilan, HAN Huafeng, ZHANG Yong, et al. Microscopic characteristics and oil content of Chang 6 tight sandstone reservoirs in Lijiachengze area, Jingbian Oil Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 390-397. doi: 10.11781/sysydz201903390 [5] 康东雅, 向芳, 邹佐元, 等. 鄂尔多斯盆地上古生界砂岩岩石学特征及岩性差异[J]. 断块油气田, 2019, 26(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903007.htmKANG Dongya, XIANG Fang, ZOU Zuoyuan, et al. Petrological characteristics and lithological differences of Upper Paleozoic sandstone of Ordos Basin[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903007.htm [6] 张哲豪, 魏新善, 弓虎军, 等. 鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J]. 油气地质与采收率, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htmZHANG Zhehao, WEI Xinshan, GONG Hujun, et al. Diagenesis characteristics and evolution of porosity of Chang7 tight sandstone reservoir in Dingbian Oilfield, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htm [7] SHUAI Yanhua, ZHANG Shuichang, MI Jingkui, et al. Charging time of tight gas in the Upper Paleozoic of the Ordos Basin, central China[J]. Organic Geochemistry, 2013, 64: 38-46. doi: 10.1016/j.orggeochem.2013.09.001 [8] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htmYANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [9] ZHAO Junlong, TANG Dazhen, QIN Yong, et al. Evaluation of fracture system for coal marcolithotypes in the Hancheng block, eastern margin of the Ordos Basin, China[J]. Journal of Petro-leum Science and Engineering, 2017, 159: 799-809. doi: 10.1016/j.petrol.2017.09.031 [10] 刘占良, 樊爱萍, 李义军, 等. 碎屑组分差异对成岩作用的约束: 以苏里格气田东二区砂岩储层为[J]. 天然气工业, 2015, 35(8): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201508006.htmLIU Zhanliang, FAN Aiping, LI Yijun, et al. Constraints of clastic component difference on diagenesis: a case study of sandstone reservoirs in Dong-2 block of the Sulige Gasfield, Ordos Basin[J]. Natural Gas Industry, 2015, 35(8): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201508006.htm [11] 杨晓萍, 裘怿楠. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J]. 沉积学报, 2002, 20(4): 628-632. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204014.htmYANG Xiaoping, QIU Yinan. Formation process and distribution of laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 628-632. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204014.htm [12] 贺静, 冯胜斌, 黄静, 等. 物源对鄂尔多斯盆地中部延长组长6砂岩孔隙发育的控制作用[J]. 沉积学报, 2011, 29(1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101010.htmHE Jing, FENG Shengbin, HUANG Jing, et al. Effects of provenance on porosity development of Chang 6 sandstone of the Yanchang Formation in the center of Ordos Basin[J]. Acta Sedi-mentologica Sinica, 2011, 29(1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101010.htm [13] 巴晶, CARCIONE J M, 曹宏, 等. 非饱和岩石中的纵波频散与衰减: 双重孔隙介质波传播方程[J]. 地球物理学报, 2012, 55(1), 219-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201022.htmBA Jing, CARCIONE J M, CAO Hong, et al. Velocity dispersion and attenuation of P waves in partially saturated-rocks: wave propagation equations in double-porosity medium[J]. Chinese Journal of Geophysics, 2012, 55(1): 219-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201022.htm [14] CHITRALA Y, MORENO C, SONDERGELD C, et al. An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions[J]. Journal of Petroleum Science and Engineering, 2013, 108: 151-161. [15] COLMENARES L B, ZOBACK M D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 695-729. [16] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htmYAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm [17] 王猛. 鄂尔多斯盆地镇原—泾川地区中生界断裂发育[J]. 断块油气田, 2019, 26(2): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902003.htmWANG Meng. Mesozoic fracture development characteristics of Zhenyuan-Jingchuan area, Ordos Basin[J]. Fault-Block Oil and Gas Field, 2019, 26(2): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902003.htm [18] 刘秀婵, 陈西泮. 鄂尔多斯盆地富县地区长8油层组致密油成藏主控因素分析[J]. 油气藏评价与开发, 2019, 9(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201901002.htmLIU Xiuchan, CHEN Xipan. Analysis on main controlling factors of tight oil reservoirs in Chang-8 reservoir of Fu County, Ordos Basin[J]. Reservoir Evaluation and Development, 2019, 9(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201901002.htm [19] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698 [20] 范翔宇. 油气钻井地质[M]. 重庆: 重庆大学出版社, 2010: 148-180.FAN Xiangyu. The geology of oil and gas drilling[M]. Chongqing: Chongqing University Press, 2010: 148-180. [21] 郭莉, 王延斌, 刘伟新, 等. 大港油田注水开发过程中油藏参数变化规律分析[J]. 石油实验地质, 2006, 28(1): 85-90. doi: 10.11781/sysydz200601085GUO Li, WANG Yanbin, LIU Weixin, et al. Variation law of reservoir parameters during waterflooding in Dagang Oil Field[J]. Petroleum Geology & Experiment, 2006, 28(1): 85-90. doi: 10.11781/sysydz200601085 [22] FAN Xiangyu, GONG Ming, ZHANG Qiangui, et al. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China[J]. Journal of Petroleum Science and Enginee-ring, 2014, 113: 72-80. [23] NELSON E J, MEYER J J, HILLIS R R, et al. Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 361-371. [24] GUROCAK Z, SOLANKI P, ALEMDAG S, et al. New considerations for empirical estimation of tensile strength of rocks[J]. Engineering Geology, 2012, 145-146: 1-8. [25] HE Shiming, WANG Wei, SHEN Hua, et al. Factors influencing wellbore stability during underbalanced drilling of horizontal wells: when fluid seepage is considered[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 80-89. [26] KANG H, ZHANG X, SI L, et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology, 2010, 116(3/4): 333-345. [27] 李志明, 张金珠. 地应力与油气勘探开发[M]. 北京: 石油工业出版社, 1997: 138-140.LI Zhiming, ZHANG Jinzhu. In-situ stress and petroleum exploration & development[M]. Beijing: Petroleum Industry Press, 1997: 138-140. [28] 曾大乾, 张世民, 卢立泽. 低渗透致密砂岩气藏裂缝类型及特征[J]. 石油学报, 2003, 24(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304010.htmZENG Daqian, ZHANG Shimin, LU Lize. Types and characteristics of fractures in tight sandstone gas reservoirs with low permeability[J]. Acta Petrolei Sinica, 2003, 24(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304010.htm [29] 师永民, 霍进, 张玉广. 陆相油田开发中后期油藏精细描述[M]. 北京: 石油工业出版社, 2004: 1-267.SHI Yongmin, HUO Jin, ZHANG Guangyu. Detailed reservoir description in the middle and late period of continental oilfield development[M]. Beijing: Petroleum Industry Press, 2004: 1-267. [30] ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7/8): 1049-1076. [31] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htmZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm