Mechanical properties and influencing factors of Funing Formation sandstone reservoir in Jinhu Sag, Subei Basin
-
摘要: 储层岩石力学在油气田开发中具有关键作用。以苏北盆地金湖凹陷古近系阜宁组岩心为基础,综合采用岩石力学实验、X衍射、薄片分析、扫描电镜等方法,分析了阜宁组岩性、温度、流体及围压与砂岩力学性质的关系,探讨了各因素的影响机制。岩性是砂岩力学性质的决定性因素,砂岩力学性质与粒度、石英含量、黏土矿物含量、颗粒接触关系以及胶结物含量有关。温度对砂岩力学性质的影响具有分段性:25~100℃时,主导机制为矿物涨缩效应和层间水脱出;100~180℃时,主导机制为热开裂作用。随着油水比例的降低,砂岩力学参数发生规律性变化,砂岩强度弱化与孔隙流体压力、部分饱和作用以及化学作用有关。油田开发中人工措施对砂岩储层力学性质影响显著,在出砂预测和井壁稳定性分析中应引起重视。Abstract: Reservoir rock mechanics plays a key role in oil and gas field development. The relationship between lithology, temperature, fluid and confining pressure and the mechanical properties of sandstone reservoirs and the influence mechanism of each factor were discussed using rock mechanics tests, X-ray diffraction, cast thin section and scanning electron microscopy analyses of core samples from the Funing Formation in the Jinhu Sag of Subei Basin. Lithology is a decisive factor for the mechanical properties of sandstones, which are related to particle size, quartz content, clay mineral content, particle contact and cement content. The influence of temperature on the mechanical properties of sandstones is segmented. At 25-100 ℃, minerals expand and contract, while interlayer water escapes. At 100-180 ℃, thermal cracking is dominant. As the oil-water ratio decreases, the mechanical parameters of sandstones change regularly, and the weakening of sandstone strength is related to pore fluid pressure, partial saturation and chemical effects. Artificial measures in oilfield development have a significant impact on the mechanical properties of sandstone reservoirs, and attention should be paid on sand production prediction and wellbore stability analysis.
-
Key words:
- sandstone reservoir /
- mechanical property /
- influence factor /
- Funing Formation /
- Jinhu Sag /
- Subei Basin
-
表 1 苏北盆地金湖凹陷不同岩性条件阜宁组砂岩单轴压缩实验结果
Table 1. Uniaxial compression test results of Funing Formation sandstones under different lithological conditions in Jinhu Sag, Subei Basin
井名 岩性 样品编号 破坏载荷/kN 抗压强度/MPa 弹性模量/GPa 泊松比 矿物碎屑含量/% 碳酸盐胶结物含量/% 黏土矿物含量/% 石英 长石 岩屑 Yang1 粉砂岩 A0 27.94 55.82 7.58 0.18 56 16 14 6 6.7 Gao6 细砂岩 B0 57.28 114.51 15.98 0.16 69 9 11 8 2.5 Bian9 粉砂岩 C0 20.57 41.08 6.88 0.12 46 18 23 5 6.3 Ta7 细砂岩 D0 43.74 87.56 7.57 0.11 58 13 15 9 3.4 Qin3-1 粉砂岩 E0 46.14 92.32 11.04 0.18 62 19 7 8 2.3 Dongwu1 细砂岩 F0 32.30 64.50 8.59 0.12 53 18 16 9 2.5 Tian89 粉砂岩 G0 50.68 101.67 12.57 0.16 55 12 15 15 2.4 Min30 细砂岩 H0 35.87 71.56 7.63 0.19 52 17 21 6 3.1 Cui4 细砂岩 I0 48.20 96.35 13.61 0.13 61 14 13 9 1.2 Lv1 粉砂岩 J0 34.54 68.94 8.14 0.14 53 17 14 10 4.2 Tian33-4 细砂岩 K0 41.33 82.74 9.26 0.17 60 17 11 7 3.8 Hecan1 细砂岩 L0 58.62 117.19 17.49 0.15 67 11 7 11 2.9 表 2 苏北盆地金湖凹陷阜宁组砂岩不同温度条件单轴压缩实验结果
Table 2. Uniaxial compression test results of Funing Formation sandstones under different temperatures in Jinhu Sag, Subei Basin
样品编号 温度/℃ 破坏载荷/kN 抗压强度/MPa 弹性模量/GPa 泊松比 E01 25 46.94 94.26 12.41 0.195 E02 60 48.86 98.27 11.84 0.183 E03 100 51.31 102.56 13.14 0.161 E04 140 48.83 95.71 10.71 0.169 E05 180 41.31 86.33 9.45 0.182 表 3 苏北盆地金湖凹陷不同油水比例条件阜宁组砂岩单轴压缩实验结果
Table 3. Uniaxial compression test results of Funing Formation sandstones under different oil-water ratios, Jinhu Sag, Subei Basin
样品编号 油水比例 破坏载荷/kN 抗压强度/MPa 弹性模量/GPa 泊松比 B01 100%/0 42.21 84.37 11.65 0.222 B02 80%/20% 37.87 76.17 9.05 0.271 B03 60%/40% 31.74 63.74 6.92 0.265 B04 40%/60% 28.66 56.75 6.10 0.316 B05 20%/80% 28.33 57.17 6.37 0.303 B06 0/100% 24.97 52.69 5.94 0.313 表 4 苏北盆地金湖凹陷阜宁组砂岩三轴压缩实验结果
Table 4. Triaxial compression test results of Funing Formation sandstones in Jinhu Sag, Subei Basin
井名 岩心编号 围压/MPa 破坏载荷/kN 抗压强度/MPa 弹性模量/GPa 泊松比 Yang1 A1 10 47.87 95.64 9.49 0.19 A2 20 58.15 116.12 13.14 0.21 A3 30 64.65 130.44 14.05 0.23 Gao6 B1 10 62.15 124.37 16.79 0.18 B2 20 66.91 134.22 17.57 0.20 B3 30 71.32 152.53 19.1 0.21 Bian9 C1 10 31.11 62.19 8.01 0.13 C2 20 41.70 83.31 9.14 0.15 C3 30 77.23 165.70 12.63 0.17 Ta7 D1 10 52.76 105.67 9.78 0.13 D2 20 61.92 123.78 11.99 0.14 D3 30 66.43 144.17 15.28 0.16 Qin3-1 E1 10 71.82 143.56 15.39 0.19 E2 20 98.16 197.00 19.76 0.21 E3 30 103.64 224.56 20.22 0.22 -
[1] 李志明, 张金珠. 地应力与油气勘探开发[M]. 北京: 石油工业出版社, 1997.LI Zhiming, ZHANGJinzhu. In-situ stress and petroleum exploration & development[M]. Beijing: Petroleum Industry Press, 1997. [2] FJAR E, HOLT R M, RAAEN A M, et al. Petroleum related rock mechanics[M]. Oxford: Elsevier, 2008. [3] PLUMB R A. Influence of composition and texture on the failure properties of clastic rocks[C]//Paper presented at the Rock Mechanics in Petroleum Engineering. Netherlands: Society of Petroleum Engineers, 1994. [4] 孟召平, 彭苏萍, 屈洪亮. 煤层顶底板岩石成分和结构与其力学性质的关系[J]. 岩石力学与工程学报, 2000, 19(2): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200002001.htmMENG Zhaoping, PENG Suping, QU Hongliang. The relationship between composition and texture of sedimentary rock and its mechanical properties in the roof and floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200002001.htm [5] 李智武, 罗玉宏, 刘树根, 等. 川东北地区地层条件下致密储层力学性质实验分析[J]. 矿物岩石, 2005, 25(4): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504008.htmLI Zhiwu, LUO Yuhong, LIU Shugen, et al. The experimental analysis of mechanical properties of compact reverivor rocks under formation conditions, northeast of Sichuan Basin, China[J]. Journal of Minera-logy and Petrology, 2005, 25(4): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504008.htm [6] SABATAKAKIS N, KOUKIS G, TSIAMBAOS G, et al. Index properties and strength variation controlled by microstructure for sedimentary rocks[J]. Engineering Geology, 2008, 97(1/2): 80-90. [7] 李志鹏, 卜丽侠. 渤海湾盆地渤南洼陷沙四段岩相的岩石力学性质差异[J]. 石油实验地质, 2019, 41(2): 228-233. doi: 10.11781/sysydz201902228LI Zhipeng, BU Lixia. Difference of lithofacies mechanical pro-perties of the fourth member of Shahejie Formation in the Bonan Subsag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2019, 41(2): 228-233. doi: 10.11781/sysydz201902228 [8] ARAÚJO R G S, SOUSA J L A O, BLOCH M. Experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 298. e1-298. e16. [9] 吴忠, 秦本东, 谌论建, 等. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报, 2005, 24(11): 1863-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200511008.htmWU Zhong, QIN Bendong, SHEN Lunjian, et al. Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1863-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200511008.htm [10] RAO Qiuhua, WANG Zhi, XIE Haifeng, et al. Experimental study of mechanical properties of sandstone at high temperature[J]. Journal of Central South University of Technology, 2007, 14(1): 478-483. [11] 孟召平, 李明生, 陆鹏庆, 等. 深部温度、压力条件及其对砂岩力学性质的影响[J]. 岩石力学与工程学报, 2006, 25(6): 1177-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606015.htmMENG Zhaoping, LI Mingsheng, LU Pengqing, et al. Temperature and pressure under deep conditions and their influences on mechanical properties of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1177-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606015.htm [12] 吴刚, 邢爱国, 张磊. 砂岩高温后的力学特性[J]. 岩石力学与工程学报, 2007, 26(10): 2110-2116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710021.htmWU Gang, XING Aiguo, ZHANG Lei. Mechanical charactistics of sandstone after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2110-2116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710021.htm [13] 韩林, 刘向君, 孟英峰, 等. 高压油气藏对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 968-972. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905016.htmHAN Lin, LIU Xiangjun, MENG Yingfeng, et al. Experimental study of mechanical behaviors of sandstone under high-pressure oil and gas reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 968-972. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905016.htm [14] 刘向君, 申剑坤, 梁利喜, 等. 孔隙压力变化对岩石强度特性的影响[J]. 岩石力学与工程学报, 2011, 30(S2): 3457-3463. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2015.htmLIU Xiangjun, SHEN Jiankun, LIANG Lixi, et al. Effects of pore pressure on rock strength properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3457-3463. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2015.htm [15] RATHNAWEERA T D, ROMAIN L, RANJITH P G, et al. Deformation mechanics and acoustic propagation in reservoir rock under brine and oil saturation: an experimental study[J]. Energy Procedia, 2016, 88: 544-551. doi: 10.1016/j.egypro.2016.06.076 [16] 王桂花, 张建国, 程远方, 等. 含水饱和度对岩石力学参数影响的实验研究[J]. 石油钻探技术, 2001, 29(4): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200104022.htmWANG Guihua, ZHANG Jianguo, CHENG Yuanfang. Experimental study on the effect of the water content on the rock mechanical Parameters[J]. Petroleum Drilling Techniques, 2001, 29(4): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200104022.htm [17] FEUCHT L J, LOGAN J M. Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics, 1990, 175(1/3): 159-176. [18] 路保平, 张传进, 鲍洪志. 油气开发过程中岩石力学性质变化规律实验研究[J]. 岩石力学与工程学报, 2000, 19(S1): 878-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1011.htmLU Baoping, ZHANG Cuanjin, BAO Hongzhi. Testing study on changing law of rock mechanics roperties during development of oil and gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 878-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1011.htm [19] NADEAU P H. Earth's energy "Golden Zone": a synthesis from mineralogical research[J]. Clay Minerals, 2011, 46(1): 1-24. [20] 付晓龙, 戴俊生, 张宏国. 汊涧斜坡带阜宁期应力场数值模拟及低级序断层发育规律预测[J]. 地质力学学报, 2013, 19(2): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201302001.htmFU Xiaolong, DAI Junsheng, ZHANG Hongguo. Numerical simulation of structural stress field in Funing sedimentary period and prediction of the development law of lower-order faults in Chajian slope zone[J]. Journal of Geomechanics, 2013, 19(2): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201302001.htm [21] 戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报: 自然科学版, 2016, 40(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601001.htmDAI Junsheng, LIU Jingshou, YANG Haimeng, et al. Numerical simulation of stress field of Fu-2 Member in Tongcheng fault zone and development suggestions[J]. Journal of China University of Petroleum, 2016, 40(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601001.htm [22] 宋宁, 闫义, 张金川, 等. 东台坳陷现今地温场特征与油藏分布关系[J]. 大地构造与成矿学, 2013, 37(1): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201301021.htmSONG Ning, YAN Yi, ZHANG Jinchuan, et al. Present-day geothermal field and implications for hydrocarbon reservoirs in the Dongtai Depression, Eastern China[J]. Geotectonica et Metallogenia, 2013, 37(1): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201301021.htm [23] 朱平, 毛凤鸣, 李亚辉. 复杂断块油藏形成机理和成藏模式[M]. 北京: 石油工业出版社, 2008.ZHU Ping, MAO Fengming, LI Yahui. Formation mechanism and model of complex fault block reservoir[M]. Beijing: Petroleum Industry Press, 2008. [24] 邹才能, 陶士振, 张响响, 等. 中国低孔渗大气区地质特征、控制因素和成藏机制[J]. 中国科学(D辑地球科学), 2009, 39(11): 1607-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911012.htmZOU Caineng, TAO Shizhen, ZHANG Xiangxiang, et al. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China's large gas provinces of low porosity and permeability[J]. Science in China(Series D Earth Sciences), 2009, 52(8): 1068-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911012.htm [25] 林志红, 项伟, 张云明. 湘西红砂岩基本物理指标和微结构参数对其强度影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001015.htmLIN Zhihong, XIANG Wei, ZHANG Yunming. Experimental research on influences of physical indices and microstructure parameters on strength properties of red stone from western Hunan[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001015.htm [26] PALCIAUSKAS V V, DOMENICO P A. Characterization of drained and undrained response of thermally loaded repository rocks[J]. Water Resources Research, 1982, 18(2): 281-290. [27] 张渊, 张贤, 赵阳升. 砂岩的热破裂过程[J]. 地球物理学报, 2005, 48(3): 656-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503024.htmZHANG Yuan, ZHANG Xian, ZHAO Yangsheng. Process of sandstone thermal cracking[J]. Chinese Journal of Geophysics, 2005, 48(3): 656-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503024.htm [28] 左建平, 谢和平, 周宏伟, 等. 不同温度作用下砂岩热开裂的实验研究[J]. 地球物理学报, 2007, 50(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704023.htmZUO Jianping, XIE Heping, ZHOU Hongwei, et al. Experimental research on thermal cracking of sandstone under different temperature[J]. Chinese Journal of Geophysics, 2007, 50(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704023.htm [29] 邵继喜. 热—力作用下砂岩损伤破裂演化规律实验研究[D]. 太原: 太原理工大学, 2018.SHAO Jixi. Experimental study on the damage evolution of sandstone under thermo-mechanical coupling[D]. Taiyuan: Taiyuan University of Technology, 2018. [30] 刘均荣, 秦积舜, 吴晓东. 温度对岩石渗透率影响的实验研究[J]. 石油大学学报: 自然科学版, 2001, 25(4): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200104015.htmLIU Junrong, QIN Jishun, WU Xiaodong. Experimental study on relation between temperature and rocky permeability[J]. Journal of the University of Petroleum, China, 2001, 25(4): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200104015.htm [31] 谈彩萍, 倪培, 刘翠荣. 微裂隙内流体包裹体在油气运移及成藏研究中的应用: 以高邮凹陷为例[J]. 矿床地质, 2005, 24(5): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505008.htmTAN Caiping, NI Pei, LIU Cuirong. Application of fluid inclusions in microfissures to study of hydrocarbon migration and accumulation: a case study of Gaoyou Depression[J]. Mineral Deposits, 2005, 24(5): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505008.htm [32] 朱珍德, 胡定. 裂隙水压力对岩体强度的影响[J]. 岩土力学, 2000, 21(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200001019.htmZHU Zhende, HU Ding. The effect of intestitial water pressure on rock mass strength[J]. Rock and Soil Mechanics, 2000, 21(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200001019.htm [33] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009.CHEN Yu, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: Science and Technology of China Press, 2009.