Ar-ion polishing FE-SEM analysis of organic maceral identification
-
摘要: 氩离子抛光—场发射扫描电镜是页岩储层微观孔隙结构表征的常用手段,但单独依靠扫描电镜观察无法直接识别有机质类型,而荧光显微镜是鉴定显微组分的主要方法。通过大量场发射扫描电镜与荧光显微镜相结合的定位观察技术,实现对扫描电镜下特定显微组分的鉴定和观察,并总结出扫描电镜下有机显微组分鉴定的方法和特征。氩离子抛光—场发射扫描电镜下,可通过有机质的外部形态、硬度、亮度、颜色、突起、有机质孔隙发育特征以及裂隙发育特征等综合判断出结构镜质体、无结构镜质体、镜屑体、丝质体、半丝质体、菌类分泌体、惰屑体、油沥青以及焦沥青。Abstract: Argon-ion polishing field emission-scanning electron microscopy (FE-SEM) is a common method to characterize the microscopic pore structure characteristics of shale reservoirs, but organic macerals cannot be directly identified by FE-SEM alone. Fluorescence microscopy is the main method for identifying macerals. Through a large number of localized FE-SEM and fluorescence microscopy observations, the microscopic characteristics of specific macerals under FE-SEM were summarized. The macerals visualized using FE-SEM can be interpreted based on features such as the external shape, hardness, brightness, color, relief, organic pore development characteristics and fissure development characteristics of the organic matter. Telinite, collotelinite, vitrodetrinite, fusinite, semifusinite, funginite, inertodetrinite, oil bitumen and pyrobitumen were identified.
-
Key words:
- argon-ion polishing /
- FE-SEM /
- organic macerals
-
图 3 扫描电镜和光学显微镜下镜质体的识别特征
a.具有胞腔结构的结构镜质体,可见细胞壁和细胞腔,SL2-N06井,3 430.1 m,SEM;b.a的反射光照片;c.可见胞腔结构的结构镜质体,SL2-N06井,3 430.1 m,SEM;d.c的反射光照片;e.结构镜质体,SL2-N09井,3 433.9 m,SEM;f.e的反射光照片;g.无结构镜质体,B2-N10井,3 938.2 m,SEM;h.g的反射光照片;i.“工”字形镜屑体,B2-N10井,3 938.2 m,SEM;j.i的反射光照片;k.三叉状镜屑体,B2-N10井,3 938.2 m,SEM;l.k的反射光照片
Figure 3. Identification characteristics of vitrinites under FE-SEM and OM
图 4 扫描电镜和光学显微镜下惰质体的识别特征
a.网状结构丝质体,细胞壁和细胞腔清晰可见,SL2-N06井,3 430.1 m,SEM;b.a的反射光照片;c.丝质体,细胞壁破碎,SL2-N06井,3 430.1 m,SEM;d.c的反射光照片;e.半丝质体,S103-N05井,266.7 m;f.e的反射光照片;g.环形菌孢体,SL2-N11井,3 435.2 m,SEM;h.g的反射光照片;i.圆形菌类体,B2-N10井,3 938.2 m,SEM;j.i的反射光照片;k.粗粒体,B2-N10井,3 938.2 m;l.k的反射光照片;m.枝杈状惰屑体,B2-N10井,3 938.2 m,SEM;n.m的反射光照片;o.惰屑体,B2-N10井,3 938.2 m,SEM;p.o的反射光照片;q.惰屑体,SL2-N06井,3 430.1 m,SEM;r.q的反射光照片
Figure 4. Identification characteristics of inertinites under FE-SEM and OM
图 5 扫描电镜和光学显微镜下固体沥青的识别特征
a.油沥青和焦沥青,B2-N10井,3 938.2 m,SEM;b.a的反射光照片;c.油沥青,S103-N05井,2 663.7 m,SEM;d.c的反射光照片;e.油沥青,发育不规则孔隙,SL2-N06井,3 430.1 m,SEM;f.e的反射光照片;g.油沥青,B2-N10井,3 938.2 m,SEM;h.焦沥青,孔隙发育,N2-N04井,3 896.1 m,SEM;i.h的反射光照片;j.k和l的反射光照片;k.焦沥青,蜂窝状孔隙发育,B2-N04井,3 896.1 m,SEM;l.焦沥青,蜂窝状孔隙发育,B2-N04井,3 896.1 m,SEM
Figure 5. Identification characteristics of solid bitumen under FE-SEM and OM
表 1 氩离子抛光扫描电镜下显微组分鉴定标志
Table 1. Maceral identification marks under Ar-ion scanning electron microscopy
显微组分 亚组分 形态及质地 颜色 亮度 与周围物质接触关系 突起 孔隙及裂缝发育情况 镜质体 结构镜质体 显微状,网络状,具细胞壁和细胞腔,细胞壁致密均匀 80%~90%黑色,灰黑色 暗 会有轻微变形,颗粒边界明显且平直 较高 无孔隙 无结构镜质体 质地均匀致密 80%~90%黑色,灰黑色 暗 胶结形式,顺层分布,会受周围物质影响而轻微变形 较高,略低于结构镜质体 大多数无孔隙,或边缘见少量孔隙,可见垂直裂隙 镜屑体 各种碎屑形态,质地均匀致密 80%~90%黑色,灰黑色 暗 受周围物质影响小,颗粒边界明显,拱形边界 较高 无孔隙发育,偶尔见圆形椭圆形孔隙 惰质体 丝质体 与结构镜质体相似,细胞壁一般比结构镜质体细,胞腔大 70%黑色,黑灰色,深灰色 较暗 受压变形,颗粒边界明显且平直 高 一般无孔隙,偶见细密孔隙发育 半丝质体 残留丝质体结构,但细胞壁模糊不清 70%黑色,黑灰色,深灰色 较暗 顺层分布,受压变形褶曲 高 少量残余孔隙,多呈不规则状 惰屑体 和镜屑体相似 70%黑色,灰色 较暗 与镜屑体相似 高 可见零星孔隙 固体沥青 油沥青 没有固定形状,形似胶结物,均质 40%~50%黑色,浅灰色 亮 充填状,形似胶结物 低,比周围矿物质低 不规则干裂纹,收缩孔 焦沥青 没有固定形状,多呈粒状结构 40%~50%黑色,浅灰色 亮 充填状,形似胶结物 低,比周围矿物质低 蜂窝状孔隙 注:颜色的百分比数值参考CorelDraw图版颜色。 -
[1] GUO Huijuan, HE Ruliang, JIA Wanglu, et al. Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 91: 279-296. doi: 10.1016/j.marpetgeo.2018.01.013 [2] 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htmJIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm [3] FISHMAN N S, HACKLEY P C, LOWERS H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103: 32-50. doi: 10.1016/j.coal.2012.07.012 [4] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048 [5] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htmZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm [6] 焦淑静, 韩辉, 翁庆萍, 等. 页岩孔隙结构扫描电镜分析方法研究[J]. 电子显微学报, 2012, 31(5): 432-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201205012.htmJIAO Shujing, HAN Hui, WENG Qingping, et al. Scanning electron microscope analysis of porosity in shale[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(5): 432-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201205012.htm [7] 张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htmZHANG Hui, JIAO Shujing, PANG Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm [8] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061 [9] 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htmGAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling Fault Depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm [10] 王香增, 张丽霞, 雷裕红, 等. 低熟湖相页岩内运移固体有机质和有机质孔特征: 以鄂尔多斯盆地东南部延长组长7油层组页岩为例[J]. 石油学报, 2018, 39(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802002.htmWANG Xiangzeng, ZHANG Lixia, LEI Yuhong, et al. Characteristics of migrated solid organic matters and organic pores in low maturity Lacustrine shale: a case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, southeastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802002.htm [11] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. [12] 王朋飞, 姜振学, 韩波, 等. 中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数[J]. 石油学报, 2018, 39(2): 152-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802003.htmWANG Pengfei, JIANG Zhenxue, HAN Bo, et al. Reservoir geolo-gical parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China[J]. Acta Petrolei Sinica, 2018, 39(2): 152-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802003.htm [13] LU Jiemin, RUPPEL S C, ROWE H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J]. AAPG Bulletin, 2015, 99(2): 333-357. [14] 王飞宇, 傅家谟, 刘德汉. 煤和陆源有机质生油岩有机岩石学特点及评价[J]. 石油勘探与开发, 1994, 21(4): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK404.006.htmWANG Feiyu, FU Jiamo, LIU Dehan. Organic petrological characte-ristics of coal and terrestrial organic matter and their assessment as a oil source rock[J]. Petroleum Exploration and Development, 1994, 21(4): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK404.006.htm [15] 戴娜, 钟宁宁, 张瑜, 等. 氩离子抛光/扫描电镜分析方法在笔石有机质研究中的应用[J]. 电子显微学报, 2015, 34(5): 416-420. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201505011.htmDAI Na, ZHONG Ningning, ZHANG Yu, et al. Ar ion milling/SEM analysis on graptolitinite macerals[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 416-420. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201505011.htm [16] 潘春孚, 纪友亮. 松辽盆地北部深层层序地层格架建立与模式研究: 以古龙—常家围子断陷沙河子组为例[J]. 沉积学报, 2010, 28(3): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003012.htmPAN Chunfu, JI Youliang. The establishment of sequence stratigraphic framework and its models of deep formation in northern Songliao Basin: taking the Shahezi Formation of Gulong-Changjiaweizi Fault Depression as an example[J]. Acta Sedimentologica Sinica, 2010, 28(3): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003012.htm [17] 程克明, 王铁冠, 赵师庆, 等. 烃源岩的地球化学及演化特征[M]. 北京: 石油勘探开发研究院, 1989.CHENG Keming, WANG Tieguan, ZHAO Shiqing, et al. Geochemistry and its evolution characteristics of source rocks[M]. Beijing: Petroleum Exploration and Development Research Institute, 1989. [18] 张慧, 李小彦, 郝琦, 等. 中国煤的扫描电子显微镜研究[M]. 北京: 地质出版社, 2003: 55-68.ZHANG Hui, LI Xiaoyan, HAO Qi, et al. Study on scanning electron microscope of China coal[M]. Beijing: Geological Press, 2003: 55-68. [19] JACOB H. Disperse solid bitumens as an indicator for migration and maturity in prospecting for oil and gas[J]. Erdol and Kohgle, 1985, 38(3): 365-374. [20] CURIALE J A. Origin of solid bitumens, with emphasis on biological marker results[J]. Organic Geochemistry, 1986, 10(1/3): 559-580. [21] LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. GCAGS Transactions, 2014, 3: 51-60. [22] CAMP W K. Diagenetic evolution of organic matter cements in unconventional shale reservoirs[C]//American Association of Petroleum Geologists Conference & Exhibition. Denver, Colorado: [s.n.], 2016: 1125-1129.