Enrichment model of shale gas in southeastern Sichuan Basin: a case study of Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in Dingshan area
-
摘要: 在川东南丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气基本地质条件认识的基础上,利用钻井、测井、压裂测试、分析化验及构造解释等资料,通过天然气在页岩气系统内的赋存形式、运移方式及运移强度的分析,探讨了适用于研究区的页岩气富集模式。页岩气系统中高角度裂缝延伸距离短,页岩储层顺层滑脱缝、页理缝等顺层缝延伸较远,顺层方向渗透率远大于垂直层面方向,这些特征共同决定了天然气在页岩气系统中是以横向运移为主导、垂向—横向联合运移的方式运移。齐岳山断裂带、页岩储层埋深和距齐岳山断裂带的距离是丁山地区五峰组—龙马溪组页岩气富集成藏关键因素。齐岳山断裂带为控盆断裂带,断裂及伴生裂缝发育,为页岩气逸散区;东南部浅埋区页岩气系统中高角度缝较发育,顺层缝开启,游离气占比低于60%,表现为正常压力系统,是页岩气半滞留区;西北部中深埋藏区页岩气系统中高角度缝相对不发育,顺层缝闭合,垂向—横向联合运移受阻,大部分页岩气滞留在页岩储层中,游离气占比超过60%,表现为高压—超高压压力系统,是页岩气滞留富集区。Abstract: Based on the understanding of the basic geological conditions of shale gas from the Upper Ordovician Wufeng Formation to the Lower Silurian Longmaxi Formation in Dingshan area of the southeastern Sichuan Basin, the occurrence, migration mode and intensity of natural gas in the shale gas system were discussed according to the results of drilling, logging, fracturing test, laboratory test and structural interpretation, moreover, a shale gas enrichment mode suitable for the study area was proposed. In shale gas systems, high-angle fractures extend for a short distance, while horizontal fractures such as bedding-parallel detachment and interlayer bedding fractures extend for a long distance. As a result, the permeability in the bedding direction is much greater than that in the vertical direction. These characteristics together determined that natural gas in shale gas system was usually transported horizontally, and sometimes both horizontally and vertically. For the Qiyueshan fault zone, the burial depth of shale reservoir and the distance to Qiyueshan fault zone are the major constrains for shale gas enrichment in the Wufeng-Longmaxi formations in the study area. The Qiyueshan fault zone is a basin-controlling fault zone with fractures and associated fractures developed, and is a shale gas escaping area. In the shallow-buried area in the southeastern part, high-angle fractures were relatively developed, by which horizontal fractures were opened. The proportion of free gas was less than 60%. A normal pressure system indicates a semi-retention area for shale gas. In the middle-to deep-buried area in the northwest, high-angle fractures were relatively undeveloped, and horizontal fractures were closed. The vertical and horizontal migrations were blocked, and most of shale gas was trapped in shale reservoirs. The proportion of free gas is more than 60%. A high-to ultra-high pressure system indicates a shale gas accumulation area.
-
Key words:
- horizontal migration /
- enrichment /
- escape /
- shale gas /
- Wufeng-Longmaxi formations /
- Dingshan area /
- Sichuan Basin
-
表 1 四川盆地东南缘丁山地区上奥陶统五峰组—下志留统龙马溪组天然气烃类组成及碳同位素特征
Table 1. Hydrocarbon compositions and corresponding carbon isotopic values of shale gas of Wufeng-Longmaxi formations in Dingshan area, southeastern Sichuan Basin
井号 层位 井段 摩尔分数/% δ13CPDB/‰ CH4 C2H6 C3H8 CH4 C2H6 C3H8 A井 O3w-S1l1 水平段 98.99 0.59 0.02 -32.1 -38.4 - O3w-S1l1 水平段 98.64 0.44 0.01 -29.1 -35.4 - C井 O3w-S1l1 水平段 99.02 0.51 0.03 - - - D井 O3w-S1l1 水平段 97.96 0.54 0 -30.0 -34.3 - O3w-S1l1 水平段 98.47 0.53 0 -29.8 -34.5 - O3w-S1l1 水平段 97.78 0.61 0 -29.5 -34.1 - O3w-S1l1 水平段 97.78 0.68 0 -29.7 -35.1 - O3w-S1l1 水平段 98.17 0.57 0 -29.6 -34.4 - -
[1] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htmGUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm [2] 黄仁春, 魏祥峰, 王强. 四川盆地东南缘丁山地区页岩气成藏富集的关键控制因素[J]. 海相油气地质, 2017, 22(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201702004.htmHUANG Renchun, WEI Xiangfeng, WANG Qiang. Key factors of shale gas accumulation in Dingshan area of southeastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2017, 22(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201702004.htm [3] 刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报, 2015, 33(4): 818-827. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504022.htmLIU Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi formation by overpressure in the south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 818-827. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504022.htm [4] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htmGUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [5] 盖海峰, 肖贤明. 页岩气碳同位素倒转: 机理与应用[J]. 煤炭学报, 2013, 38(5): 827-833. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305021.htmGAI Haifeng, XIAO Xianming. Mechanism and application of carbon isotope reversal of shale gas[J]. Journal of China Coal Society, 2013, 38(5): 827-833. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305021.htm [6] 冯子齐, 刘丹, 黄士鹏, 等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发, 2016, 43(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605006.htmFENG Ziqi, LIU Dan, HUANG Shipeng, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605006.htm [7] 魏祥峰, 郭彤楼, 刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htmWEI Xiangfeng, GUO Tonglou, LIU Ruobing. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling shale gasfield, Chongqing[J]. Natural Gas Geoscience, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htm [8] 高波. 四川盆地龙马溪组页岩气地球化学特征及其地质意义[J]. 天然气地球科学, 2015, 26(6): 1173-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506022.htmGAO Bo. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience, 2015, 26(6): 1173-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506022.htm [9] ZUMBERGE J, FERWORN K, BROWN S. Isotopic reversal ('rollover') in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology, 2012, 31(1): 43-52. [10] TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J]. Chemical Geology, 2013, 339: 194-204. [11] 马中良, 申宝剑, 潘安阳, 等. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制: 来自热模拟实验的认识[J]. 石油实验地质, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428MA Zhongliang, SHEN Baojian, PAN Anyang, et al. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. Petroleum Geology & Experiment, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428 [12] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htmHU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [13] 黄仁春, 倪楷. 焦石坝地区龙马溪组页岩有机质孔隙特征[J]. 天然气技术与经济, 2014, 8(3): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201403006.htmHUANG Renchun, NI Kai. Pore characteristics of organic matter in shale of Longmaxi Formation, Jiaoshiba area[J]. Natural Gas Technology and Economy, 2014, 8(3): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201403006.htm [14] 余光春, 魏祥峰, 李飞, 等. 上扬子地区断裂活动对页岩气保存的破坏作用[J]. 石油实验地质, 2020, 42(3): 355-362. doi: 10.11781/sysydz202003355YU Guangchun, WEI Xiangfeng, LI Fei, et al. Disruptive effects of faulting on shale gas preservation in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2020, 42(3): 355-362. doi: 10.11781/sysydz202003355 [15] 庹秀松, 陈孔全, 罗顺社, 等. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件[J]. 石油与天然气地质, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htmTUO Xiusong, CHEN Kongquan, LUO Shunshe, et al. Structural characteristics of Qiyueshan Fault and shale gas preservation at the southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htm [16] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区页岩气保存条件分析[J]. 油气地质与采收率, 2019, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htmHE Shun, QIN Qirong, FAN Cunhui, et al. Shale gas preservation conditions in Dingshan area, southeastern Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htm [17] BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. [18] 张士亚, 郜建军, 蒋泰然. 利用甲、乙烷碳同位素判识天然气类型的一种新方法[M]//地质矿产部石油地质研究所. 石油与天然气地质文集第一集中国煤成气研究. 北京: 地质出版社, 1988: 48-58.ZHANG Shiya, GAO Jianjun, JIANG Tairan. A new method to identify natural gas type by carbon isotope of methane and ethane[M]//Petroleum Geology Research Section of Ministry of Geology and Mineral. Petroleumand Natural Gas Geology Collection (first episode) Coal Gas, China. Beijing: Geological Publishing House, 1988: 48-58. [19] 杨振恒, 魏志红, 何文斌, 等. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701017.htmYANG Zhenheng, WEI Zhihong, HE Wenbin, et al. Characteristics and significance of onsite gas desorption from Wufeng-Longmaxi shales in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(1): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701017.htm [20] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区五峰—龙马溪组页岩储层特征及影响因素[J]. 油气藏评价与开发, 2019, 9(4): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201904012.htmHE Shun, QIN Qirong, FAN Cunhui, et al. Shale reservoir characteristics and influencing factors of Wufeng-Longmaxi formation in Dingshan area, southeast Sichuan[J]. Reservoir Evaluation and Development, 2019, 9(4): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201904012.htm [21] 钟城, 秦启荣, 胡东风, 等. 川东南丁山地区五峰组—龙马溪组页岩气藏"六性"特征[J]. 油气地质与采收率, 2019, 26(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902003.htmZHONG Cheng, QIN Qirong, HU Dongfeng, et al. Experimental study on "six properties" of shale gas reservoirs in the Wufeng-Longmaxi formation in Dingshan area, southeastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902003.htm [22] 徐政语, 梁兴, 王希友, 等. 四川盆地罗场向斜黄金坝建产区五峰组—龙马溪组页岩气藏特征[J]. 石油与天然气地质, 2017, 38(1): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701015.htmXU Zhengyu, LIANG Xing, WANG Xiyou, et al. Shale gas reservoir characteristics of the Wufeng-Longmaxi formations in Huangjinba construction block of the Luochang Syncline, the Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(1): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701015.htm [23] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htmBORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm