Source of hydrocarbons discovered from Cambrian sub-salt dolomite in Bachu uplift area, Tarim Basin
-
摘要: 勘探研究表明,塔里木盆地巴楚隆起不发育下寒武统主力烃源岩,但该区MB1井在下寒武统见较好油气显示。为了明确MB1井的油源、评价巴楚隆起的勘探潜力,对MB1井下寒武统吾松格尔组油气显示段岩心抽提物进行了地球化学分析,进一步开展了油—油、油—源对比等研究,揭示了油气物质的成因特征与来源。结果表明,抽提物具有典型的塔里木盆地海相原油的地球化学特征,即饱和烃色谱图为单峰前峰型,正构烷烃系列保存完整,谱图基线平整、未见明显的“鼓包”,Pr/Ph比值为0.89,三环萜烷系列的相对丰度高于藿烷系列,C27-C28-C29ααα20R规则甾烷具有明显的“V”字型分布特征,原油碳同位素值为-30.8‰,三芴系列化合物表现为明显的硫芴优势,指示其来源于强还原沉积环境的腐泥型生烃母质,处于高成熟演化阶段。MB1井下寒武统油显示与玉北1条带奥陶系原油同源,均来自于下寒武统烃源岩,推测巴楚隆起MB1井下寒武统油气来自周边下寒武统烃源岩或古油藏,从而提升了该区寒武系的勘探潜力。Abstract: Exploration experiences have showed that the main source rocks of the Lower Cambrian have not been developed in the Bachu uplift; however, the well MB1 in this area had a good oil and gas showing in the Lower Cambrian.To clarify the hydrocarbon source of well MB1 and evaluate the exploration potential of the Bachu uplift, the core extracts from the oil and gas display section of the Lower Cambrian Wusongge'er Formation of well MB1 were studied here by using of geochemical analysis, moreover, oil-oil and oil-source correlations have also been carried out.The saturated hydrocarbon fraction of extracts showed a typical signature which is consistent with marine crude oil in the Tarim Basin, of which the n-alkanes have a single-peak pre-peak distribution, the series is preserved intact and there was no apparent "hump" in the basline, the ratio of Pr/Ph was 0.89, the abundance of the tricyclic terpanes was higher than that of the hopanes, the C27-C28-C29ααα20R regular steranes had a typical "V" shape, the carbon isotope value of crude oil is -30.8‰, and the trifluorene compounds were obviously override thiofluorene.It then indicates that they were derived from the saprolite-type sources with a strongly reducing sedimentary environment, moreover, the organic matters are high mature.The Lower Cambrian oil showed in well MB1 have the same origin as the Ordovician crude oil in the Yubei 1 belt, and both of them probably came from the Lower Cambrian source rocks. It was inferred that the Lower Cambrian oil and gas in well MB1 came from the peripheral Lower Cambrian source rocks or paleo-oil reservoirs, which enhanced the exploration potential of Cambrian in the Bachu uplift.
-
Key words:
- oil shows /
- geochemical characteristics /
- oil-source correlation /
- Cambrian /
- Bachu uplift /
- Tarim Basin
-
表 1 样品信息表
Table 1. Sample information
序号 构造位置 样品编号 采样井或露头剖面 层位 样品类型 1 巴楚隆起 MB1-1 MB1 吾松格尔组(${\rm {\rlap{—} C }}$1w) 抽提物 2 玉北地区 YB1-1 YB1 鹰山组(O1-2y) 原油 3 玉北地区 YB1-1X-1 YB1-1X 鹰山组(O1-2y) 原油 4 玉北地区 YB1-2X-1 YB1-2X 鹰山组(O1-2y) 原油 5 玉北地区 YB9-1 YB9 鹰山组(O1-2y) 原油 6 巴楚隆起 M4-1 M4 奥陶系(O) 原油 7 巴楚隆起 LS2-1 LS2 奥陶系(O) 原油 8 柯坪露头 苏盖特布拉克剖面-1 苏盖特布拉克剖面 玉尔吐斯组(${\rm {\rlap{—} C }}$1y) 抽提物 表 2 塔里木盆地巴楚隆起MB1井寒武系岩心抽提物与玉北奥陶系原油生标参数对比
Table 2. Biomarker comparison between Cambrian core extracts of well MB1 of Bachu uplift and Ordovician crude oils of Yubei area, Tarim Basin
井位或露头剖面 层位 类型 三类规则甾烷相对含量/% Ts/(Ts+Tm) 重排甾烷/规则甾烷 C21/C23三环萜烷 伽马蜡烷/C30藿烷 C27ααα20R C28ααα20R C29ααα20R MB1 ${\rm {\rlap{—} C }}$1w 抽提物 39.85 14.89 45.26 0.60 3.03 0.88 0.27 YB1 O1-2y 原油 23.49 9.97 66.54 0.48 0.68 0.55 0.21 YB1-1X O1-2y 原油 16.60 9.60 73.80 0.44 0.87 0.53 0.16 YB1-2X O1-2y 原油 18.80 10.10 71.10 0.49 0.58 0.56 0.18 YB9 O1-2y 原油 18.50 10.50 71.00 0.64 0.88 0.66 0.24 M4 O 原油 35.60 22.80 41.60 0.58 0.17 0.65 0.24 LS2 O 原油 41.40 23.50 50.10 0.62 0.23 苏盖特布拉克剖面 ${\rm {\rlap{—} C }}$1y 抽提物 35.00 30.00 36.00 0.44 0.17 0.79 0.30 -
[1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [2] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htmQI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm [3] 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248 [4] 顾忆, 万旸璐, 黄继文, 等. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157 [5] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htmWANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al. Disco-very and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htm [6] 翟晓先, 顾忆, 钱一雄, 等. 塔里木盆地塔深1井寒武系油气地球化学特征[J]. 石油实验地质, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329ZHAI Xiaoxian, GU Yi, QIAN Yixiong, et al. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim Basin[J]. Petroleum Geology & Experiment, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329 [7] 田军. 塔里木盆地油气勘探成果与勘探方向[J]. 新疆石油地质, 2019, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901002.htmTIAN Jun. Petroleum exploration achievements and future targets of Tarim basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901002.htm [8] 张天付, 黄理力, 倪新锋, 等. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义: 亚洲第一深井轮探1井突破的启示[J]. 石油与天然气地质, 2020, 41(5): 928-940. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005005.htmZHANG Tianfu, HUANG Lili, NI Xinfeng, et al. Lithological combination, genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: Insight through the deepest Asian onshore well-Well Luntan 1[J]. Oil & Gas Geology, 2020, 41(5): 928-940. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005005.htm [9] 王玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htmWANG Yuwei, CHEN Honghan, GUO Huifang, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htm [10] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htmYANG Haijun, LI Yong, TANG Yan'gang, et al. Discovery of Kelasu subsalt deep large gas field, Tarim basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm [11] 马庆佑, 吕海涛, 蒋华山, 等. 塔里木盆地台盆区构造单元划分方案[J]. 海相油气地质, 2015, 20(1): 1-9.MA Qingyou, LV Haitao, JIANG Huashan, et al. A division program of structural units in the Paleozoic platform-basin region, Tarim Basin[J]. Marine Origin Petroleum Geology, 2015, 20(1): 1-9. [12] 王毅, 张仲培, 张波, 等. 塔里木盆地巴楚地区大型膝褶带的发现及油气勘探意义[J]. 石油与天然气地质, 2014, 35(6): 914-924. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406020.htmWANG Yi, ZHANG Zhongpei, ZHANG Bo, et al. Discovery of large kink-band structures and petroleum exploration implications in Bachu area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 914-924. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406020.htm [13] 罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849LUO Mingxia, XIA Yongtao, SHAO Xiaoming, et al. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849 [14] 彼得斯K E, 沃尔特斯C C, 莫尔多万J M, 等. 生物标志化合物指南(下册)[M]. 2版. 张水昌, 李振西, 译. 北京: 石油工业出版社, 2011.PETERS K E, WALTERS C C, MOLODOWAN J M, et al. The biomarker guide[M]. 2nd ed. ZHANG Shuichang, LI Zhenxi, trans. Beijing: Ptroleum Inductry Press, 2011. [15] 孟凡巍, 周传明, 燕夔, 等. 通过C27/C29甾烷和有机碳同位素来判断早古生代和前寒武纪的烃源岩的生物来源[J]. 微体古生物学报, 2006, 23(1): 51-56 https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200601005.htmMENG Fanwei, ZHOU Chuanming, YAN Kui, et al. Biological origin of Early Palaeozoic and preCambrian hydrocarbon source rocks based on C27/C29 sterane ratio and organic carbon isotope[J]. Acta Micropalaeontologica Sinica 2006, 23(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200601005.htm [16] 李政, 徐兴友, 宋来亮, 等. 伊朗卡山区块原油地球化学特征[J]. 石油勘探与开发, 2005, 32(5): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505029.htmLI Zheng, XU Xingyou, SONG Lailiang, et al. Oil geochemical characteristics in the Kashan block, Iran[J]. Petroleum Exploration and Development, 2005, 32(5): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505029.htm [17] ANDVUSEVICH V E, ENGEL M E, ZUMBERGE J E, 等. 原油稳定碳同位素在地史中阶段性变化[J]. 张殿伟, 译. 天然气地球科学, 2000, 11(4/5): 49-56.ANDVUSEVICH V E, ENGEL M E, ZUMBERGE J E, et al. The stable carbon isotopes of crude oil change periodically in geologic history[J]. ZHANG Dianwei, trans. Natural Gas Geoscience, 2000, 11(4/5): 49-56. [18] 马中远, 黄苇, 李婧婧, 等. 塔中北坡SH9井区柯坪塔格组下段原油地球化学特征[J]. 石油实验地质, 2013, 35(5): 559-563. doi: 10.11781/sysydz201305559MA Zhongyuan, HUANG Wei, LI Jingjing, et al. Geochemical characteristics of crude oil from lower Kalpintag Formation in SH9 well area, northern slope of middle Tarim Basin[J]. Petroleum Geology & Experiment, 2013, 35(5): 559-563. doi: 10.11781/sysydz201305559 [19] 吴鲜, 曹自成, 路清华, 等. 塔里木盆地顺北地区白垩系原油成因类型与来源[J]. 石油实验地质, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255WU Xian, CAO Zicheng, LU Qinghua, et al. Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255 [20] 李水福, 何生. 原油芳烃中三芴系列化合物的环境指示作用[J]. 地球化学, 2008, 37(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801006.htmLI Shuifu, HE Sheng. Geochemical characteristics of dibenzothiophene, dibenzofuran and fluorene and their homologues and their environmental indication[J]. Geochimica, 2008, 37(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801006.htm [21] 路清华, 邵志兵, 贾存善, 等. 塔里木盆地玉北地区奥陶系原油成因特征分析[J]. 石油实验地质, 2013, 35(3): 320-324. doi: 10.11781/sysydz201303320LU Qinghua, SHAO Zhibing, JIA Cunshan, et al. Genesis features of crude oil in Ordovician, Yubei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 320-324. doi: 10.11781/sysydz201303320 [22] 马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htmMA Anlai, JIN Zhijun, ZHU Cuishan, et al. Effect of TSR on the crude oil in Ordovician reservoirs of well Luosi-2 from Maigaiti slope, Tarim Basin: evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39(4): 730-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm [23] ZHU Guangyou, ZHANG Ying, ZHOU Xiaoxiao, et al. TSR, deep oil cracking and exploration potential in the Hetianhe gas field, Tarim Basin, China[J]. Fuel, 2019, 236: 1078-1092.