留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滩坝砂油藏不同压裂方式下单井控制可采储量预测方法

苏映宏

苏映宏. 滩坝砂油藏不同压裂方式下单井控制可采储量预测方法[J]. 石油实验地质, 2021, 43(4): 697-703. doi: 10.11781/sysydz202104697
引用本文: 苏映宏. 滩坝砂油藏不同压裂方式下单井控制可采储量预测方法[J]. 石油实验地质, 2021, 43(4): 697-703. doi: 10.11781/sysydz202104697
SU Yinghong. Prediction of single-well-constrained recoverable reserves in beach bar sand reservoir using different fracturing methods[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 697-703. doi: 10.11781/sysydz202104697
Citation: SU Yinghong. Prediction of single-well-constrained recoverable reserves in beach bar sand reservoir using different fracturing methods[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 697-703. doi: 10.11781/sysydz202104697

滩坝砂油藏不同压裂方式下单井控制可采储量预测方法

doi: 10.11781/sysydz202104697
基金项目: 

中国石化科技部项目“石油探明未开发储量优选评价及潜力研究” P18055-3

详细信息
    作者简介:

    苏映宏(1971-), 男, 硕士, 高级工程师, 从事储量评价研究。E-mail: suyh.syky@sinopec.com

  • 中图分类号: TE155

Prediction of single-well-constrained recoverable reserves in beach bar sand reservoir using different fracturing methods

  • 摘要: 单井控制可采储量是评价滩坝砂油藏开发是否经济可行的重要指标。由于未动用特低渗透滩坝砂油藏存在压敏效应、启动压力梯度、不同压裂方式等特征,难以应用常规的单井控制可采储量预测方法进行预测。基于典型区块静、动态数据,建立直井分层压裂油藏数值模拟模型,通过历史拟合确定启动压力梯度及压敏效应表征公式中的系数,并分析压敏效应和启动压力梯度对生产动态的影响。在此基础上,分析不同油藏参数和开发参数对直井分层压裂弹性开发单井控制可采储量的影响,确定单井控制可采储量的主控因素依次为:压力系数、渗透率、含油饱和度、有效厚度、孔隙度、压裂缝长、集中度和黏度;通过多元回归方式建立直井分层压裂弹性开发下单井控制可采储量与主控因素之间的计算公式,经与实际生产井数据对比,相对误差为4.58%,说明公式具有较高的精度,能够满足矿场要求。进一步建立直井体积压裂、水平井多段压裂和水平井体积压裂弹性开发单井控制可采储量与油藏参数之间的预测公式,研究结果为评价滩坝砂油藏动用潜力提供基础。

     

  • 图  1  模型纵向示意图

    Figure  1.  Longitudinal schematic diagram of single well model

    图  2  月产油量对比

    Figure  2.  Comparison of monthly oil productions

    图  3  井底流压对比

    Figure  3.  Comparison of bottom hole pressures

    图  4  储层含油饱和度场比较

    Figure  4.  Comparison of reservoir oil saturation fields

    图  5  储层压力变化场比较

    Figure  5.  Comparison of reservoir pressure change fields

    图  6  油田现场数据与模型计算累积产油量对比

    Figure  6.  Comparison of field data and model calculated cumulative oil productions

    图  7  各参数变化幅度对应的单井控制可采储量变化曲线

    Figure  7.  Variation curves of single-well-constrained recoverable reserves corresponding to the variation range of each parameter

    图  8  多元回归拟合效果

    Figure  8.  Fitting effect of multiple regressions

    图  9  FXX7-X6井月产油量

    Figure  9.  Monthly oil productions of well FXX7-X6

    图  10  FXX4-X9井月产油量

    Figure  10.  Monthly oil productions of well FXX4-X9

    图  11  不同井型及压裂规模单井控制可采储量对比

    Figure  11.  Comparison of single-well-constrained recoverable reserves of different well types and fracturing scales

    表  1  单井控制可采储量随各油藏参数因素变化状况

    Table  1.   Variation of single-well-constrained recoverable reserves with various reservoir parameters

    变化幅度/% 单井控制可采储量评估结果/104 t
    渗透率 有效厚度 黏度 含油饱和度 孔隙度 压力系数 压缩系数 集中度 压裂缝长
    -30 0.325 0.488 0.708 0.177 0.489 0.009 0.681 0.588 0.559
    -25 0.399 0.522 0.705 0.289 0.523 0.123 0.683 0.605 0.583
    -20 0.448 0.556 0.703 0.391 0.557 0.237 0.685 0.623 0.606
    -15 0.501 0.591 0.701 0.483 0.591 0.351 0.687 0.640 0.629
    -10 0.556 0.625 0.698 0.564 0.625 0.464 0.689 0.658 0.650
    -5 0.615 0.659 0.696 0.634 0.66 0.578 0.691 0.675 0.671
    0 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.693
    5 0.740 0.728 0.691 0.745 0.728 0.806 0.696 0.711 0.711
    10 0.806 0.762 0.689 0.785 0.762 0.920 0.698 0.729 0.730
    15 0.876 0.796 0.686 0.815 0.796 1.034 0.700 0.748 0.748
    20 0.949 0.83 0.684 0.834 0.83 1.148 0.702 0.766 0.765
    25 1.024 0.865 0.682 0.843 0.864 1.262 0.704 0.784 0.782
    30 1.102 0.899 0.679 0.844 0.898 1.375 0.706 0.803 0.798
    变化30%与-30%的差额 0.777 0.411 0.029 0.667 0.409 1.366 0.025 0.215 0.239
    下载: 导出CSV

    表  2  单井控制可采储量对比

    Table  2.   Comparison of single-well-constrained recoverable reserves

    井号 渗透率/10-3 μm2 有效厚度/m 含油饱和度 孔隙度 集中度 目前累计产油量/104 t 单井控制可采储量/104 t 相对误差/%
    预测值 多元回归计算值
    FXX4-X9 5.87 12.1 0.380 0.143 0.10 0.85 0.91 0.90 1.099
    FXX1-X8 14.40 8.5 0.523 0.142 0.36 1.34 1.36 1.28 5.882
    FXX7-X6 9.11 11.4 0.476 0.141 0.38 1.01 1.02 1.05 2.941
    FXX7-X2 5.43 25.8 0.370 0.118 0.20 0.62 0.66 0.61 7.576
    FXX4-X6 4.85 11.4 0.392 0.144 0.30 0.34 0.37 0.39 5.405
    下载: 导出CSV
  • [1] 郭鸣黎, 陈艳, 郑振恒, 等. 致密油藏可采储量概率快速评估方法: 以红河油田长8油藏为例[J]. 石油实验地质, 2021, 43(1): 154-160. doi: 10.11781/sysydz202101154

    GUO Mingli, CHEN Yan, ZHENG Zhenheng, et al. Rapid evaluation of probable recoverable reserves in tight reservoirs: a case study of Chang 8 reservoir (eighth member of Yanchang Formation) in Honghe oil field[J]. Petroleum Geology & Experiment, 2021, 43(1): 154-160. doi: 10.11781/sysydz202101154
    [2] 赵淑霞, 于红军. 滩坝砂特低渗透油藏经济动用技术研究与实践[J]. 油气地质与采收率, 2009, 16(2): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200902033.htm

    ZHAO Shuxia, YU Hongjun. Economical production technologies research and application of ultra low permeability beach-bar sand reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(2): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200902033.htm
    [3] 宋彦男, 曲占庆, 肖春金. 低渗透滩坝砂储层压裂评价决策方法[J]. 天然气勘探与开发, 2016, 39(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201602011.htm

    SONG Yannan, QU Zhanqing, XIAO Chunjin. Decision methods for evaluating low-permeability beach-bar sandstone reservoirs developed by hydraulic fracturing[J]. Natural Gas Exploration and Development, 2016, 39(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201602011.htm
    [4] 刘小波. CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J]. 油气地质与采收率, 2020, 27(3): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003016.htm

    LIU Xiaobo. Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003016.htm
    [5] 仉莉. 降低CO2驱油最小混相压力化学体系研发[J]. 油气地质与采收率, 2020, 27(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001007.htm

    ZHANG Li. Development of chemical system for reducing minimum miscible pressure during CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001007.htm
    [6] 李泽农, 黄秀祯, 张大夫, 等. 油田开发规划优选模型研究[J]. 石油学报, 1987, 8(4): 76-83.

    LI Zhenong, HUANG Xiuzhen, ZHANG Dafu, et al. Research of optimal development planning model for oilfield[J]. Acta Petrolei Sinica, 1987, 8(4): 76-83.
    [7] GOTTFRIED B S. Optimization of a cyclic steam injection process using penalty functions[J]. Society of Petroleum Engineers Journal, 1972, 12(1): 13-20.
    [8] LEE A S, ARONOFSKY J S. A linear programming model for scheduling crude oil production[J]. Journal of Petroleum Technology, 1958, 10(7): 51-54.
    [9] SLIDER H C. Practical petroleum reservoir engineering methods: an energy conservation science[M]. Tulsa: Petroleum Publishing Company, 1976.
    [10] 陈元千, 陶自强. 高含水期水驱曲线的推导及上翘问题的分析[J]. 断块油气田, 1997, 4(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT199703005.htm

    CHEN Yuanqian, TAO Ziqiang. Derivation of water drive curve at high water-cut stage and its analysis of upwarping problem[J]. Fault-Block Oil & Gas Field, 1997, 4(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT199703005.htm
    [11] 李立峰, 滕世婷, 冯绪波, 等. 基于水驱开发全过程的新型水驱特征曲线[J]. 特种油气藏, 2019, 26(3): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903015.htm

    LI Lifeng, TENG Shiting, FENG Xubo, et al. A new water-flooding characteristic curve based on the whole water-flooding process[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903015.htm
    [12] 赵永胜, 黄秀祯. 递减曲线的多功能预测模型[J]. 石油勘探与开发, 1985(5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198505008.htm

    ZHAO Yongsheng, HUANG Xiuzhen. A multiple functional model of decline curves[J]. Petroleum Exploration and Development, 1985(5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198505008.htm
    [13] 陈元千, 郭二鹏. 新型油田产量递减模型的建立与应用[J]. 中国海上油气, 2008, 20(6): 379-381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200806007.htm

    CHEN Yuanqian, GUO Erpeng. Building and applying a new decline model of oilfield production[J]. China Offshore Oil and Gas, 2008, 20(6): 379-381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200806007.htm
    [14] 齐亚东, 王军磊, 庞正炼, 等. 非常规油气井产量递减规律分析新模型[J]. 中国矿业大学学报, 2016, 45(4): 772-778. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604016.htm

    QI Yadong, WANG Junlei, PANG Zhenglian, et al. A novel empirical model for rate decline analysis of oil and gas wells in unconventional reservoirs[J]. Journal of China University of Mining & Technology, 2016, 45(4): 772-778. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604016.htm
    [15] 高文君, 刘致远, 薛龙龙. 利用反向推理方法确定水驱特征曲线渗流方程[J]. 断块油气田, 2020, 27(4): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004016.htm

    GAO Wenjun, LIU Zhiyuan, XUE Longlong. Determination of seepage equation of water drive characteristic curve by reverse derivation method[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004016.htm
    [16] 李承龙, 迟博. 一种新型二氧化碳驱特征曲线的建立与应用[J]. 特种油气藏, 2020, 27(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002015.htm

    LI Chenglong, CHI Bo. A new characteristic curve of CO2 flooding and its application[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002015.htm
    [17] 谷建伟, 任燕龙, 张以根, 等. 一种改进的乙型水驱特征曲线研究及应用[J]. 特种油气藏, 2020, 27(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001015.htm

    GU Jianwei, REN Yanlong, ZHANG Yigen, et al. Research and application of an improved type-B water-flooding characteristic curve[J]. Special Oil & Gas Reserviors, 2020, 27(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001015.htm
    [18] 王柏力, 冯乔, 江海英, 等. 水驱特征曲线在低渗透油藏开发中的应用[J]. 特种油气藏, 2019, 26(6): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201906015.htm

    WANG Baili, FENG Qiao, JIANG Haiying, et al. Application of waterflooding characteristic curve in the development of low-permeabilityoil reservoir[J]. Special oil & Gas Reservoirs, 2019, 26(6): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201906015.htm
    [19] 代平, 孙良田, 李闽. 低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J]. 天然气工业, 2006, 26(5): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200605031.htm

    DAI Ping, SUN Liangtian, LI Min. Study on relation between porosity/permeability and effective stress of sand reservoir with low permeability[J]. Natural Gas Industry, 2006, 26(5): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200605031.htm
    [20] 傅建斌. 异常高压致密砂砾岩油藏开发机理及开发方式研究[D]. 青岛: 中国石油大学(华东), 2016.

    FU Jianbin. Research on mechanism and development mode of abnormally high pressure tight sandy conglomerate reservoir[D]. Qingdao: China University of Petroleum (East China), 2016.
    [21] 王敬, 刘慧卿, 刘仁静, 等. 考虑启动压力和应力敏感效应的低渗、特低渗油藏数值模拟研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3317-3327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2043.htm

    WANG Jing, LIU Huiqing, LIU Renjin, et al. Numerical simulation for low-permeability and extra-low permeability reservoirs with considering starting pressure and stress sensitivity effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3317-3327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2043.htm
    [22] 徐立坤, 齐梅, 李云波, 等. 碳酸盐岩油藏多测试辅助单井历史拟合[C]//2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019.

    XU Likun, QI Mei, LI Yunbo, et al. Multi-test assisted single-well history matching in carbonate reservoirs[C]//Proceedings of 2019 International Conference on Oil and Gas Field Exploration and Development. Xi'an: Xi'an Shiyou University, 2019.
    [23] 张洪辉. 提高低渗裂缝性油田历史拟合精度的方法标准研究[J]. 中国石油和化工标准与质量, 2017, 37(11): 95-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201711046.htm

    ZHANG Honghui. Research on methods and standards to improve the accuracy of history fitting in low permeability fractured oilfields[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(11): 95-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201711046.htm
    [24] 朱晓颖, 蔡高玉, 陈小平, 等. 概率论与数理统计[M]. 北京: 人民邮电出版社, 2016.

    ZHU Xiaoying, CAI Gaoyu, CHEN Xiaoping, et al. Probability theory and mathematical statistics[M]. Beijing: Posts & Telecom Press, 2016.
    [25] 耿站立, 姜汉桥, 李杰, 等. 正交试验设计法在优化注聚参数研究中的应用[J]. 西南石油大学学报, 2007, 29(5): 119-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200705038.htm

    GENG Zhanli, JIANG Hanqiao, LI Jie, et al. Application of orthogonal test design methodology in optimal parameters of polymer flooding[J]. Journal of Southwest Petroleum University, 2007, 29(5): 119-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200705038.htm
    [26] 袁迎中, 张烈辉, 何磊, 等. 注采比多元回归分析及合理注采比的确定[J]. 石油天然气学报(江汉石油学院学报), 2008, 30(1): 299-302. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200801082.htm

    YUAN Yingzhong, ZHANG Liehui, HE Lei, et al. Multiple regression analysis and determination of reasonable injection-production ratio[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2008, 30(1): 299-302. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200801082.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  172
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 修回日期:  2021-05-06
  • 刊出日期:  2021-07-28

目录

    /

    返回文章
    返回