留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖相泥页岩储层脆性评价及影响因素分析——以苏北盆地海安凹陷曲塘次凹泥页岩为例

孙彪 刘小平 舒红林 焦创赟 王高成 刘梦才 罗瑀峰

孙彪, 刘小平, 舒红林, 焦创赟, 王高成, 刘梦才, 罗瑀峰. 湖相泥页岩储层脆性评价及影响因素分析——以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006
引用本文: 孙彪, 刘小平, 舒红林, 焦创赟, 王高成, 刘梦才, 罗瑀峰. 湖相泥页岩储层脆性评价及影响因素分析——以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006
SUN Biao, LIU Xiaoping, SHU Honglin, JIAO Chuangyun, WANG Gaocheng, LIU Mengcai, LUO Yufeng. Evaluation and influencing factors for brittleness of lacustrine shale reservoir: a case study of Qutang Sub-Sag, Subei Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006
Citation: SUN Biao, LIU Xiaoping, SHU Honglin, JIAO Chuangyun, WANG Gaocheng, LIU Mengcai, LUO Yufeng. Evaluation and influencing factors for brittleness of lacustrine shale reservoir: a case study of Qutang Sub-Sag, Subei Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006

湖相泥页岩储层脆性评价及影响因素分析——以苏北盆地海安凹陷曲塘次凹泥页岩为例

doi: 10.11781/sysydz2021061006
基金项目: 

国家自然科学基金项目 42072150

国家自然科学基金项目 41372144

国家科技重大专项 2017ZX05049001-008

详细信息
    作者简介:

    孙彪(1995-), 男, 博士研究生, 从事非常规油气地质研究。E-mail: 719997758@qq.com

    通讯作者:

    刘小平(1971-), 男, 博士, 教授, 从事石油地质教学研究。E-mail: liuxiaoping@cup.edu.cn

  • 中图分类号: TE122.24

Evaluation and influencing factors for brittleness of lacustrine shale reservoir: a case study of Qutang Sub-Sag, Subei Basin

  • 摘要: 为准确评价湖相泥页岩脆性及探究其影响因素,选取了苏北盆地海安凹陷曲塘次凹古近系阜宁组二段湖相泥页岩样品,利用全岩X衍射分析、有机碳测定、镜质体反射率测定、扫描电镜、三轴岩石力学等实验技术手段,分析了样品的矿物成分、地球化学、储集空间等特征;并采用测井、强度参数、矿物成分以及应力—应变曲线变化特征等方法评价其脆性特征。结果表明,页岩主要为云质页岩和灰质页岩,脆性矿物含量较高;有机碳含量平均为1.25%,且已达到成熟阶段;储集空间由特低孔和裂缝组成;应力应变关系曲线表现出较强的脆性特征;不同方法的脆性评价结果存在一定差异,基于弹性参数与矿物组分评价脆性比基于强度参数的应用效果更佳,但每种方法都存在一定局限性。阜二段页岩脆性受矿物组分、有机质丰度、储集空间发育程度等共同影响,随着白云石含量、有机质成熟度、裂缝发育程度的增加,储层脆性随之增加;而方解石含量、有机质丰度、孔隙度的增加则会减弱储层脆性。

     

  • 图  1  苏北盆地构造单元划分(a)、曲塘次凹位置(b)及J19井取样位置(c)

    Figure  1.  Tectonic division of Subei Basin (a), location of Qutang Sub-Sag (b) and samples' location in well J19 (c)

    图  2  苏北盆地海安凹陷曲塘次凹J19井阜宁组二段泥页岩扫描电子显微镜照片

    Figure  2.  SEM images of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  3  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩样品应力—应变曲线

    围压40 MPa。

    Figure  3.  Stress-strain curves of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  4  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩样品三轴压缩试验后的破裂形态

    Figure  4.  Rupture geometry after triaxial compression of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  5  苏北盆地海安凹陷曲塘次凹J19井阜二段云质泥页岩K值与脆性指数的关系

    Figure  5.  Correlations between K values and brittleness index of dolomitic shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  6  苏北盆地海安凹陷曲塘次凹J19井阜二段灰质泥页岩K值与脆性指数的关系

    Figure  6.  Correlations between K values and brittleness index of limy shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  7  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩K与矿物组分含量的关系

    Figure  7.  Correlations between K values and mineral compositions of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  8  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩样品脆性与TOC和Ro的相关性

    Figure  8.  Correlations between K values and TOC and Ro of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    图  9  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩样品脆性与孔隙度的关系

    Figure  9.  Correlations between brittleness and porosity of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    表  1  苏北盆地海安凹陷曲塘次凹J19井阜宁组二段泥页岩样品矿物组成

    Table  1.   Mineral components of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    样品编号 深度/m 岩性 黏土矿物/% 石英/% 钾长石/% 斜长石/% 方解石/% 白云石/% 铁白云石/% 脆性矿物/%
    1 3 819.66 含灰泥页岩 40 28 1 6 20 0 0 55
    2 3 842.32 灰质泥页岩 36 4 1 7 28 0 1 61
    3 3 853.15 含灰质泥页岩 40 13 1 7 14 4 17 56
    4 3 868.45 含云泥页岩 39 18 4 9 5 2 12 50
    5 3 889.32 泥质云岩 17 12 2 10 5 8 35 72
    6 3 895.00 云质泥页岩 28 13 1 9 9 2 21 55
    下载: 导出CSV

    表  2  苏北盆地海安凹陷曲塘次凹J19井阜宁组二段泥页岩地化和储层特征

    Table  2.   Geochemical characteristics of shale and reservoir features in second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    样品编号 深度/m 岩性 ω(TOC)/% Ro/% 孔隙度/%
    1 3 819.66 含灰泥页岩 2.25 1.10 3.36
    2 3 842.32 灰质泥页岩 2.29 0.88
    3 3 853.15 含灰质泥页岩 0.84 1.06 1.47
    4 3 868.45 含云泥页岩 0.73 1.09 2.57
    5 3 889.32 泥质云岩 0.53 1.21 1.07
    6 3 895.00 云质泥页岩 0.83 1.01
    下载: 导出CSV

    表  3  苏北盆地海安凹陷曲塘次凹J19井阜宁组二段泥页岩样品脆性特征

    Table  3.   Brittleness characteristics of shale samples from second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    编号 深度/m 岩性 直径/mm 长度/mm 抗压强度/MPa 杨氏模量/GPa 泊松比 弹性模量M/GPa 峰后模量Ex/GPa
    1 3 819.66 含灰泥页岩 24.4 49.7 274.76 26.86 0.31 0.24 -0.46
    2 3 842.32 灰质泥页岩 24.5 49.5 288.64 30.61 0.35 0.27 -1.38
    3 3 853.15 含灰质泥页岩 24.5 32.2 216.89 25.37 0.30 0.24 -0.23
    4 3 868.45 含云泥页岩 24.6 46.4 354.77 36.36 0.30 0.33 -0.35
    5 3 889.32 泥质云岩 24.4 36.8 315.44 30.33 0.22 0.25 -0.06
    6 3 895.00 云质泥页岩 24.4 53.4 259.91 31.34 0.27 0.21 -0.46
    下载: 导出CSV

    表  4  苏北盆地海安凹陷曲塘次凹J19井阜二段泥页岩样品不同方法脆性指数评价

    Table  4.   Brittleness index of shale samples by different methods, second member of Funing Formation, well J19, Qutang Sub-Sag, Haian Sag, Subei Basin

    编号 深度/m 岩性 BI1 BI2 BI3 K
    1 3 819.66 含灰泥页岩 22.94 68.69 55.00 2.91
    2 3 842.32 灰质泥页岩 23.82 72.16 61.00 6.07
    3 3 853.15 含灰质泥页岩 20.96 54.22 56.00 1.97
    4 3 868.45 含云泥页岩 71.32 88.69 50.00 2.06
    5 3 889.32 泥质云岩 72.55 78.86 72.00 1.26
    6 3 895.00 云质泥页岩 56.19 64.98 55.00 3.20
    下载: 导出CSV
  • [1] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    [2] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303017.htm

    YUAN Junliang, DENG Jin'gen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303017.htm
    [3] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Denver: SPE, 2008.
    [4] SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resources[C]//SPE Unconventional Gas Conference. Pittsburg, Pennsylvania: SPE, 2010.
    [5] GUO Zhiqi, LI Xiangyang, LIU Cai, et al. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett shale[J]. Journal of Geophysics and Engineering, 2013, 10(2): 2-9.
    [6] 刁海燕. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 2013, 29(9): 3300-3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309027.htm

    DIAO Haiyan. Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 2013, 29(9): 3300-3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309027.htm
    [7] 李庆辉, 陈勉, 金衍, 等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012, 31(8): 1680-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208022.htm

    LI Qnghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208022.htm
    [8] 张矿生, 刘顺, 蒋建方, 等. 长7致密油藏脆性指数计算方法及现场应用[J]. 油气井测试, 2014, 23(5): 29-32. doi: 10.3969/j.issn.1004-4388.2014.05.009

    ZHANG Kuangsheng, LIU Shun, JIANG Jianfang, et al. Calculation method about brittleness index in Chang 7 dense reservoir and its field application[J]. Well Testing, 2014, 23(5): 29-32. doi: 10.3969/j.issn.1004-4388.2014.05.009
    [9] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [10] LUAN Xinyuan, DI Bangrang, WEI Jianxin, et al. Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation[M]//SEG Technical Program Expanded Abstracts 2014. Denver: SEG, 2014: 3005-3009.
    [11] TARASOV B, POTVIN Y. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 57-69. doi: 10.1016/j.ijrmms.2012.12.011
    [12] 陈吉, 肖贤明. 南方古生界3套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报, 2013, 38(5): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305020.htm

    CHEN Ji, XIAO Xianming. Mineral composition and brittleness of three sets of Paleozoic organic-rich shales in China South area[J]. Journal of China Coal Society, 2013, 38(5): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305020.htm
    [13] ANDREEV G E. Brittle failure of rock materials[M]. Rotterdam: A.A. Balkema, 1995.
    [14] HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 35-48. doi: 10.1016/S0886-7798(02)00100-1
    [15] BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference. Oslo: Norw. Geotech. Inst., 1967: 142-150.
    [16] ALTINDAG R. Correlation of specific energy with rock brittleness concepts on rock cutting[J]. Journal of the South African Institute of Mining and Metallurgy, 2003, 103(3): 163-171.
    [17] LAWN B R, MARSHALL D B. Hardness, toughness, and brittleness: an indentation analysis[J]. Journal of the American Ceramic Society, 1979, 62(7/8): 347-350.
    [18] HONDA H, SANADA Y. Hardness of coal[J]. Fuel, 1956, 35(4): 451-461.
    [19] CHENG Qingsong, ZHANG Min, LI Hongbo. Anomalous distribution of steranes in deep lacustrine facies low maturity-maturity source rocks and oil of Funing Formation in Subei Basin[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106190.
    [20] 张廷山, 彭志, 祝海华, 等. 海安凹陷曲塘次凹阜二段页岩油形成条件及勘探潜力[J]. 地质科技情报, 2016, 35(2): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602035.htm

    ZHANG Tingshan, PENG Zhi, ZHU Haihua, et al. Forming conditions and exploration potential of shale oil from member 2 of Funing Formation in Qutang Subsag, Hai'an Sag[J]. Geological Science and Technology Information, 2016, 35(2): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602035.htm
    [21] 段宏亮, 刘世丽, 付茜. 苏北盆地古近系阜宁组二段富有机质页岩特征与沉积环境[J]. 石油实验地质, 2020, 42(4): 612-617. doi: 10.11781/sysydz202004612

    DUAN Hongliang, LIU Shili, FU Qian. Characteristics and sedimentary environment of organic-rich shale in the second member of Paleogene Funing Formation, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 612-617. doi: 10.11781/sysydz202004612
    [22] 李旭, 徐蒙, 蔡进功, 等. 东营凹陷泥页岩孔隙结构特征及其演化规律[J]. 油气地质与采收率, 2019, 26(1): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901010.htm

    LI Xu, XU Meng, CAI Jingong, et al. Structure characteristics and evolution characteristics of pores in mud shale in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901010.htm
    [23] 付茜, 刘启东, 刘世丽, 等. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析[J]. 石油实验地质, 2020, 42(4): 625-631. doi: 10.11781/sysydz202004625

    FU Qian, LIU Qidong, LIU Shili, et al. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 625-631. doi: 10.11781/sysydz202004625
    [24] 柳雪青, 胡维强, 刘玉明, 等. 海安凹陷曲塘次凹阜宁组页岩油油源分析[J]. 非常规油气, 2018, 5(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201806007.htm

    LIU Xueqing, HU Weiqiang, LIU Yuming, et al. Analysis of shale oil sources of Funing Formation in Qutang Subsag, Haian Sag[J]. Unconventional Oil & Gas, 2018, 5(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201806007.htm
    [25] HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.
    [26] 赖锦, 王贵文, 范卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3): 330-341. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201603002.htm

    LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3): 330-341. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201603002.htm
    [27] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
    [28] WANG F P, GALE J F W. Screening criteria for shale-gas systems[J]. Gulf Coast Association of Geological Societies Transactions, 2009, 59: 779-793.
    [29] 赵迪斐, 郭英海, 陈蕾, 等. 页岩储层脆性特征及其影响因素探讨[J]. 非常规油气, 2016, 3(6): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201606002.htm

    ZHAO Difei, GUO Yinghai, CHEN Lei, et al. Discussion on brittleness characteristics and influencing factors of shale gas reservoirs[J]. Unconventional Oil & Gas, 2016, 3(6): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201606002.htm
    [30] 王乔, 李虎, 刘廷, 等. 页岩脆性的表征方法及主控因素[J]. 断块油气田, 2020, 27(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004012.htm

    WANG Qiao, LI Hu, LIU Ting, et al. Characterization method and main controlling factors of shale brittleness[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004012.htm
    [31] 赖富强, 冷寒冰, 龚大建, 等. 综合矿物组分和弹性力学参数的页岩脆性评价方法[J]. 断块油气田, 2019, 26(2): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902008.htm

    WLAI Fuqiang, LENG Hanbing, GONG Dajian, et al. Evaluation of shale brittleness based on mineral compositions and elastic mechanics parameters[J]. Fault-Block Oil and Gas Field, 2019, 26(2): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902008.htm
    [32] 于庭, 巴晶, 钱卫, 等. 非常规油气储层脆性评价方法研究进展[J]. 地球物理学进展, 2019, 34(1): 236-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201901032.htm

    YU Ting, BA Jing, QIAN Wei, et al. Research progress on evaluation methods of rock brittleness in unconventional oil/gas reservoirs[J]. Progress in Geophysics, 2019, 34(1): 236-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201901032.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  162
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2021-10-14
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回