Differential characteristics of fluid occurrence in tight sandstone reservoirs: a case study of Triassic Yanchang Formation in Ordos Basin
-
摘要: 为探讨致密砂岩油藏储层流体差异性赋存特征,以鄂尔多斯盆地HQ地区三叠系延长组长6、长8油层组及HS地区长6、长8油层组为研究对象,利用核磁共振技术、高速离心实验,按渗透率区间、地区、目的层层位定量分析储层岩石可动流体含量、不同级别喉道控制的可流动孔隙空间等储层流体差异性赋存特征。不同渗透性级别的储层中,不仅总可动流体饱和度差异较大,而且可动流体赋存的喉道区间也存在较大差异。渗透性好,可动流体由较大喉道控制;渗透性差,可动流体主要由较小喉道控制。在较小喉道半径区间(小于临界喉道半径),随喉道半径增大,可动流体饱和度增加;在较大喉道半径区间(大于临界喉道半径),随喉道半径增加,可动流体饱和度降低。渗透性越好的样品,其临界喉道半径越大。不同地区、不同层位,总可动流体饱和度值由高到低的顺序依次为HQ长8、HS长8、HQ长6、HS长6。Abstract: In order to explore the differential characteristics of fluid occurrence in tight sandstone reservoirs, the Chang 6 and Chang 8 reservoirs in the Triassic Yanchang Formation in HQ and HS areas of the Ordos Basin were employed as research objects, the movable and non-movable fluid saturation of reservoir rocks were quantitatively analyzed with features including permeability interval, area and target strata by using nuclear magnetic resonance (NMR) test and high-speed centrifugal experiments. Results showed that the total movable fluid saturation, as well as the main throat intervals of movable fluid were different in reservoirs with different permeability levels. For the high permeability, movable fluid was mainly controlled by larger throat, while for the low permeability, movable fluid was mainly controlled by smaller throat. Movable fluid saturation positively correlated to the throat radius in the smaller throat radius range (< critical throat radius), and negatively correlated to throat radius in the larger throat radius range (>critical throat radius). The higher the permeability, the larger the critical throat radius.
-
表 1 实验岩心资料及实验结果
Table 1. Experimental core data and results
样号 地区 层位 长度/cm 直径/cm 氮气测孔隙度/% 氮气测渗透率/10-3μm2 水测孔隙度/% 不同喉道区间对应的可动流体饱和度/% 有效喉道(>0.05 μm) 0.05~ 0.07 μm 0.07~ 0.10 μm 0.10~ 0.20 μm 0.20~ 0.50 μm 0.50~ 1.00 μm >1.00 μm 1 HQ 长6 3.225 2.514 12.3 0.058 12.1 31.28 6.10 9.51 9.57 3.50 1.25 1.34 2 HQ 长8 3.113 2.516 7.8 0.063 7.5 25.52 4.26 8.82 8.51 2.40 0.88 0.65 3 HQ 长8 3.265 2.510 15.2 2.350 14.5 63.94 2.22 3.17 8.76 11.11 13.93 24.76 4 HQ 长8 3.188 2.514 15.5 1.700 14.6 62.97 3.69 4.48 9.24 15.83 14.76 14.98 5 HQ 长8 3.135 2.513 13.8 1.280 12.7 60.91 2.31 3.05 7.70 14.82 15.45 17.58 6 HS 长8 3.187 2.510 11.2 0.182 10.5 49.56 3.01 4.99 10.85 12.77 15.01 2.94 7 HS 长8 3.245 2.508 9.0 0.137 8.8 46.83 2.51 5.89 17.49 16.33 3.56 1.05 8 HQ 长6 3.255 2.510 13.7 0.159 13.7 45.02 3.46 5.68 12.41 17.86 4.98 0.63 9 HQ 长6 3.221 2.512 12.6 0.170 12.6 45.78 3.11 6.51 9.96 16.46 8.73 1.02 10 HQ 长8 3.206 2.513 9.4 0.710 9.6 64.16 2.85 5.30 11.14 19.98 16.87 8.01 11 HQ 长8 3.233 2.515 8.8 0.570 8.8 65.67 1.76 5.28 12.08 18.37 18.36 9.82 12 HQ 长8 3.212 2.513 8.3 0.313 8.4 60.79 1.90 8.48 15.25 24.50 5.28 5.38 13 HQ 长6 3.197 2.510 11.4 0.147 11.5 52.23 4.22 8.33 16.24 21.91 1.49 0.04 14 HQ 长6 3.183 2.515 8.8 0.029 9.1 27.11 6.94 7.29 8.09 2.33 0.63 1.83 15 HQ 长6 3.123 2.516 10.3 0.036 10.4 22.51 4.05 11.13 6.10 0.55 0.47 0.21 16 HQ 长6 3.212 2.515 9.8 0.047 10.2 31.48 5.77 8.87 10.93 3.94 0.94 1.02 17 HQ 长6 3.200 2.511 8.7 0.058 9.3 38.40 4.84 7.34 18.12 6.70 0.58 0.81 18 HQ 长6 3.076 2.515 10.3 0.116 10.2 47.56 4.21 7.97 13.32 12.16 9.64 0.25 19 HQ 长6 3.208 2.516 9.7 0.062 9.6 32.58 7.23 6.43 12.81 3.22 2.39 0.50 20 HQ 长6 3.244 2.515 11.3 0.063 11.4 31.84 5.54 9.63 9.10 3.05 1.03 3.48 21 HQ 长6 3.121 2.516 11.0 0.034 10.9 27.47 5.03 7.61 9.17 1.84 2.13 1.69 22 HQ 长6 3.208 2.515 13.9 4.520 13.8 63.13 0.86 3.63 6.87 8.29 10.29 33.20 23 HS 长6 3.156 2.519 6.8 0.010 7.0 16.27 3.94 5.96 1.77 1.16 1.28 2.17 24 HS 长6 3.260 2.520 7.8 0.012 7.9 18.60 5.77 9.38 0.99 1.20 0.40 0.86 25 HS 长6 3.224 2.519 6.9 0.013 7.1 11.72 3.28 4.27 2.03 0.63 0.84 0.67 26 HS 长6 3.205 2.520 10.7 0.044 10.5 37.29 7.06 12.59 13.01 1.32 0.84 2.48 27 HS 长6 3.268 2.520 10.4 0.039 10.5 37.97 7.28 12.52 14.40 1.54 1.30 0.93 28 HS 长6 3.200 2.520 10.3 0.036 10.2 32.65 4.11 13.10 10.54 3.14 1.61 0.13 29 HS 长6 3.226 2.519 9.5 0.032 9.1 23.01 9.64 5.66 5.42 0.48 0.62 1.19 30 HS 长6 3.243 2.520 9.5 0.056 9.3 30.95 5.95 10.99 11.18 0.82 0.39 1.62 31 HS 长6 3.212 2.518 10.8 0.135 10.7 42.83 4.50 9.15 16.26 8.97 1.13 2.82 32 HS 长6 3.134 2.518 8.8 0.160 8.9 26.45 4.63 10.25 5.72 1.49 1.09 3.28 注:不同喉道区间对应的可动流体饱和度为可流动孔隙空间与岩心总孔隙空间的比值。 表 2 离心力与喉道半径的对应关系及典型样品临界喉道半径
Table 2. Relationship between centrifugal force and throat radius and threshhold value of throat radius of typical samples
离心力大小与喉道半径对应关系 不同渗透率样品对应的临界喉道半径 离心力/psi 喉道半径/μm 典型样号 典型样品渗透率/10-3 μm2 渗透率区间/10-3 μm2 临界喉道半径区间/ μm 21 1.00 4 1.700 1.0~2.0 >1.0 42 0.50 10 0.710 0.7~1.0 0.2~0.5 104 0.20 11 0.570 0.5~0.7 0.5~1.0 209 0.10 12 0.313 0.3~0.5 0.2~0.5 300 0.07 13 0.147 0.1~0.3 0.2~0.5 417 0.05 14 0.029 < 0.1 0.1~0.2 表 3 按渗透率区间统计的实验结果
Table 3. Statistical results of experiments by permeability intervals
渗透率/10-3μm2 样品数 不同喉道区间对应的可动流体饱和度/% 0.05~0.07 μm 0.07~0.10 μm 0.10~0.20 μm 0.20~0.50 μm 0.50~1.00 μm >1.00 μm 有效喉道(>0.05 μm) >1.0 4 $\frac{0.86 \sim 3.69}{2.27}$ $\frac{3.05 \sim 4.48}{3.59}$ $\frac{6.87 \sim 9.24}{8.14}$ $\frac{8.29 \sim 15.83}{12.51}$ $\frac{10.29 \sim 15.45}{13.61}$ $\frac{14.98 \sim 33.20}{22.63}$ $\frac{60.91 \sim 63.94}{62.74}$ 0.3~1.0 3 $\frac{1.76 \sim 2.85}{2.17}$ $\frac{5.28 \sim 8.48}{6.35}$ $\frac{11.14 \sim 15.25}{12.82}$ $\frac{18.37 \sim 24.50}{20.95}$ $\frac{5.28 \sim 18.36}{13.50}$ $\frac{5.38 \sim 9.82}{7.74}$ $\frac{60.79 \sim 65.67}{63.54}$ 0.1~0.3 8 $\frac{2.51 \sim 4.63}{3.71}$ $\frac{4.99 \sim 10.25}{7.35}$ $\frac{5.72 \sim 17.49}{12.78}$ $\frac{1.49 \sim 21.91}{13.49}$ $\frac{1.09 \sim 15.01}{5.70}$ $\frac{0.036 \sim 3.28}{1.50}$ $\frac{26.45 \sim 52.23}{44.53}$ <0.1 17 $\frac{3.28 \sim 9.64}{5.69}$ $\frac{4.27 \sim 13.10}{8.89}$ $\frac{0.99 \sim 18.12}{8.93}$ $\frac{0.48 \sim 6.70}{2.23}$ $\frac{0.39 \sim 2.39}{1.03}$ $\frac{0.13 \sim 3.48}{1.27}$ $\frac{11.72 \sim 38.40}{28.04}$ 注:可动流体饱和度指可流动孔隙空间百分数,表中分式意义为:$\frac{\text { 最小值 } \sim \text { 最大值 }}{\text { 平均值 }}$,表 4,表 5,表 6中的分式意义相同。 表 4 按地区统计的实验结果
Table 4. Statistical results of experiments by regions
地区 样品数 不同喉道区间对应的可动流体饱和度/% 0.05~0.07 μm 0.07~0.10 μm 0.10~0.20 μm 0.20~0.50 μm 0.50~1.00 μm >1.00 μm 有效喉道(>0.05 μm) HQ 20 $\frac{0.86 \sim 7.23}{4.02}$ $\frac{3.05 \sim 11.13}{6.93}$ $\frac{6.10 \sim 18.12}{10.77}$ $\frac{0.55 \sim 24.50}{10.44}$ $\frac{0.47 \sim 18.36}{6.50}$ $\frac{0.036 \sim 33.20}{6.36}$ $\frac{22.51 \sim 65.67}{45.02}$ HS 12 $\frac{2.51 \sim 9.64}{5.14}$ $\frac{4.27 \sim 13.10}{8.73}$ $\frac{0.99 \sim 17.49}{9.14}$ $\frac{0.48 \sim 16.33}{4.15}$ $\frac{0.39 \sim 15.01}{2.34}$ $\frac{0.13 \sim 3.28}{1.68}$ $\frac{11.72 \sim 49.56}{31.18}$ 表 5 按层位统计的实验结果
Table 5. Statistical results of experiments by horizons
层位 样品数 不同喉道区间对应的可动流体饱和度/% 0.05~0.07 μm 0.07~0.10 μm 0.10~0.20 μm 0.20~0.50 μm 0.50~1.00 μm >1.00 μm 有效喉道(>0.05 μm) 长6 23 $\frac{0.86 \sim 9.64}{5.11}$ $\frac{3.63 \sim 13.10}{8.43}$ $\frac{0.99 \sim 18.12}{9.74}$ $\frac{0.48 \sim 21.91}{5.33}$ $\frac{0.39 \sim 10.29}{2.35}$ $\frac{0.036 \sim 33.20}{2.70}$ $\frac{11.72 \sim 63.13}{33.66}$ 长8 9 $\frac{1.76 \sim 4.26}{2.72}$ $\frac{3.05 \sim 8.82}{5.50}$ $\frac{7.70 \sim 17.49}{11.22}$ $\frac{2.40 \sim 24.50}{15.12}$ $\frac{0.88 \sim 18.36}{11.57}$ $\frac{0.65 \sim 24.76}{9.46}$ $\frac{25.52 \sim 65.67}{55.59}$ 表 6 按地区层位统计的实验结果
Table 6. Statistical results of experiments by regions and horizons
地区 层位 样品数 不同喉道区间对应的可动流体饱和度/% 0.05~0.07 μm 0.07~0.10 μm 0.10~0.20 μm 0.20~0.50 μm 0.50~1.00 μm >1.00 μm 有效喉道(>0.05 μm) HQ 长6 13 $\frac{0.86 \sim 7.23}{4.72}$ $\frac{3.63 \sim 11.13}{7.69}$ $\frac{6.10 \sim 18.12}{10.98}$ $\frac{0.55 \sim 21.91}{7.83}$ $\frac{0.47 \sim 10.29}{3.43}$ $\frac{0.036 \sim 33.20}{3.54}$ $\frac{22.51 \sim 63.13}{38.18}$ HQ 长8 7 $\frac{1.76 \sim 4.26}{2.71}$ $\frac{3.05 \sim 8.82}{5.51}$ $\frac{7.70 \sim 15.25}{10.38}$ $\frac{2.40 \sim 24.50}{15.29}$ $\frac{0.88 \sim 18.36}{12.22}$ $\frac{0.65 \sim 24.76}{11.60}$ $\frac{25.52 \sim 65.67}{57.71}$ HS 长6 10 $\frac{3.28 \sim 9.64}{5.61}$ $\frac{4.27 \sim 13.10}{9.39}$ $\frac{0.99 \sim 16.26}{8.13}$ $\frac{0.48 \sim 8.97}{2.08}$ $\frac{0.39 \sim 1.61}{0.95}$ $\frac{0.13 \sim 3.28}{1.62}$ $\frac{11.72 \sim 42.83}{27.77}$ HS 长8 2 $\frac{2.51 \sim 3.01}{2.76}$ $\frac{4.99 \sim 5.89}{5.44}$ $\frac{10.85 \sim 17.49}{14.17}$ $\frac{12.77 \sim 16.33}{14.55}$ $\frac{3.56 \sim 15.01}{9.28}$ $\frac{1.05 \sim 2.94}{1.99}$ $\frac{46.83 \sim 49.56}{48.19}$ -
[1] MORAD S, AL-RAMADAN K, KETZER J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309. doi: 10.1306/04211009178 [2] 李锦锋, 杨连如, 张凤博, 等. 下寺湾油田延长组长8段致密油富集主控因素及"甜点"模式[J]. 油气藏评价与开发, 2019, 9(6): 1-9. doi: 10.3969/j.issn.2095-1426.2019.06.001LI Jinfeng, YANG Lianru, ZHANG Fengbo, et al. Main controlling factors of enrichment and sweet spot mode of tight sandstone oil reservoir in Chang-8 Member of Yanchang Formation in Xiasiwan Oilfield[J]. Reservoir Evaluation and Development, 2019, 9(6): 1-9. doi: 10.3969/j.issn.2095-1426.2019.06.001 [3] 魏钦廉, 卢帆雨, 淡卫东, 等. 致密砂岩储层成岩相类型划分: 以鄂尔多斯盆地环县西部地区长33储层为例[J]. 断块油气田, 2020, 27(5): 591-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202005012.htmWEI Qinlian, LU Fanyu, DAN Weidong, et al. Classification of diagenetic facies in tight sandstone reservoirs: a case study of Chang 33 reservoir in the west of Huanxian, Ordos Basin[J]. Fault-Block Oil and Gas Field, 2020, 27(5): 591-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202005012.htm [4] 刘秀婵, 陈西泮. 鄂尔多斯盆地富县地区长8油层组致密油成藏主控因素分析[J]. 油气藏评价与开发, 2019, 9(1): 1-7. doi: 10.3969/j.issn.2095-1426.2019.01.002LIU Xiuchan, CHEN Xipan. Analysis on main controlling factors of tight oil reservoirs in Chang-8 reservoir of Fu County, Ordos Basin[J]. Reservoir Evaluation and Development, 2019, 9(1): 1-7. doi: 10.3969/j.issn.2095-1426.2019.01.002 [5] 王瑞飞, 齐宏新, 吕新华, 等. 深层高压低渗砂岩储层可动流体赋存特征及控制因素: 以东濮凹陷文东沙三中油藏为例[J]. 石油实验地质, 2014, 36(1): 123-128. doi: 10.11781/sysydz201401123WANG Ruifei, QI Hongxin, LV Xinhua, et al. Characteristics and controlling factors of movable fluid in deep-buried high-pressure and low-permeability sandstone reservoirs: a case study of middle section of 3rd member of Shahejie Formation in Wendong Oil Field, Dongpu Sag[J]. Petroleum Geology & Experiment, 2014, 36(1): 123-128. doi: 10.11781/sysydz201401123 [6] 张世铭, 王建功, 张小军, 等. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808006.htmZHANG Shiming, WANG Jiangong, ZHANG Xiaojun, et al. Studies on the reservoir characteristics and the fluid flow in Jianquanzi Member of the Jiuxi Basin, Northwest China[J]. Natural Gas Geoscience, 2018, 29(8): 1111-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808006.htm [7] WANG Ruifei, XU Guangjian, WU Xuguang, et al. Comparative studies of three nonfractured unconventional sandstone reservoirs with superlow permeability: examples of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. Energy & Fuels, 2017, 31(1): 107-118. [8] 刘登科, 孙卫, 任大忠, 等. 致密砂岩气藏孔喉结构与可动流体赋存规律: 以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146. doi: 10.11764/j.issn.1672-1926.2016.12.2136LIU Dengke, SUN Wei, REN Dazhong, et al. Features of pore-throat structures and movable fluid in tight gas reservoir: a case from the 8th member of Permian Xiashihezi Formation and the 1st member of Permian Shanxi Formation in the western area of Sulige Gasfield, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12): 2136-2146. doi: 10.11764/j.issn.1672-1926.2016.12.2136 [9] LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003 [10] DAIGLE H, JOHNSON A. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory[J]. Transport in Porous Media, 2016, 111(3): 669-679. [11] DAIGLE H, THOMAS B, ROWE H, et al. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, integrated ocean drilling program expedition 333[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2631-2650. [12] LYU Chaohui, NING Zhengfu, WANG Qing, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395-1405. [13] 闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htmYAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm [14] 魏赫鑫, 赖枫鹏, 蒋志宇, 等. 延长致密气储层微观孔隙结构及流体分布特征[J]. 断块油气田, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htmWEI Hexin, LAI Fengpeng, JIANG Zhiyu, et al. Micropore structure and fluid distribution characteristics of Yanchang tight gas reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm [15] LIU Dengke, SUN Wei, REN Dazhong, et al. Quartz cement origins and impact on storage performance in Permian Upper Shihezi Formation tight sandstone reservoirs in the northern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 485-496.